Skip to main content

Path Planning Based Navigation Using LIDAR for an Ackerman Unmanned Ground Vehicle

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11744))

Abstract

Path planning techniques for UGVs has been studied to reach valuable results of performance in avoiding obstacles and recognizing the best path to displace when it is trying to approach from the point A to the B. The path is estimated by computer algorithms that take data from the environment of the UGV in terms of space and depth in function of its actual position. But one problem that must be affronted is to recognize the orientation of the UGV on a specific time. This can be solved by a correctly mathematic modeling of the UGV’s cinematic. In this paper we expose a path planning algorithm for an UGV of Ackermann displacement geometry to avoid nearby obstacles using a LIDAR sensor, considering limitations of movement of the UGV cause of its mechanism. The work proposed is to develop a path planning algorithm and simulate it based on the mathematical model of cinematic displacement and considering mechanical constraints of an existing UGV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Douglas, W.: Defence Technical Information Center, junio 1995. https://apps.dtic.mil/docs/citations/ADA422845. Accessed 28 febrero 2019

  2. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  3. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  4. Basantes, J., et al.: Capture and processing of geospatial data with laser scanner system for 3D modeling and virtual reality of Amazonian Caves. In: IEEE Ecuador Technical Chapters Meeting (ETCM), Samborondón, Ecuador (2018)

    Google Scholar 

  5. Matthies, L., et al.: IEEE Xplore Digital Library, septiembre 1998. https://ieeexplore.ieee.org/abstract/document/713790. Accessed 28 febrero 2019

  6. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  7. Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  8. Shoemaker, C.M., Bornstein, J.A.: IEEE Xplore Digital Library, septiembre 1998. https://ieeexplore.ieee.org/abstract/document/713784. Accessed 28 febrero 2019

  9. Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., Reyes, R.P., Montoya, L.: Vertical take off and landing with fixed rotor. In: Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucón, Chile (2017)

    Google Scholar 

  10. Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., León, G., Jara-Olmedo, A.: Math model of UAV multi rotor prototype with fixed wing aerodynamic structure for a flight simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 199–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_15

    Chapter  Google Scholar 

  11. Dewan, A., Mahendran, A., Soni, N., Krishna, K.M.: IEEE Xplore Digital Library, 7 Nov 2013. https://ieeexplore.ieee.org/abstract/document/6697188. Accessed 23 Apr 2019

  12. Kim, J.H., Kwon, J.-W., Seo, J.: IET Digital Library, 25 septiembre 2014. https://digital-library.theiet.org/content/journals/10.1049/el.2014.2227. Accessed 28 febrero 2019

  13. Galarza, J., Pérez, E., Serrano, E., Tapia, A., Aguilar, W.G.: Pose estimation based on monocular visual odometry and lane detection for intelligent vehicles. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 562–566. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_40

    Chapter  Google Scholar 

  14. Aguilar, W.G., et al.: Real-time detection and simulation of abnormal crowd behavior. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 420–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_36

    Chapter  Google Scholar 

  15. Aguilar, W.G., et al.: Statistical abnormal crowd behavior detection and simulation for real-time applications. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10463, pp. 671–682. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65292-4_58

    Chapter  Google Scholar 

  16. Zhang, Y., Wang, J., Wang, X., Li, C., Wang, L.: IEEE Explore Digital Library, 23 Sept 2015. https://ieeexplore.ieee.org/abstract/document/7320746. Accessed 23 Apr 2019

  17. Zhang, Y., Wang, J., Wang, X., Li, C., Wang, L.: IEEE Explore Digital Library, 18 Sept 2015. https://ieeexplore.ieee.org/abstract/document/7313180. Accessed 25 Apr 2019

  18. Shang, E., An, X., Li, J., He, H.: IEEE Explore Digital Library, 11 Oct 2014. https://ieeexplore.ieee.org/abstract/document/6957888. Accessed 23 Apr 2019

  19. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  20. Aguilar, W.G., Abad, V., Ruiz, H., Aguilar, J., Aguilar-Castillo, F.: RRT-based path planning for virtual bronchoscopy simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 155–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_13

    Chapter  Google Scholar 

  21. Moga, G.L., Girbacia, T.M.: SpringerLink, 24 May 2018. https://sci-hub.tw/https://link.springer.com/chapter/10.1007/978-3-319-79111-1_30. Accessed 25 Apr 2019

  22. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  23. Amaguaña, F., Collaguazo, B., Tituaña, J., Aguilar, W.G.: Simulation system based on augmented reality for optimization of training tactics on military operations. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10850, pp. 394–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95270-3_33

    Chapter  Google Scholar 

  24. Salcedo, V.S., Aguilar, W.G., Cobeña, B., Pardo, J.A., Proaño, Z.: On-board target virtualization using image features for UAV autonomous tracking. In: Boudriga, N., Alouini, M.-S., Rekhis, S., Sabir, E., Pollin, S. (eds.) UNet 2018. LNCS, vol. 11277, pp. 384–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02849-7_34

    Chapter  Google Scholar 

  25. Mezouar, Y., Chaumette, F.: IEEEXplore Digital Library, agosto 2002. https://ieeexplore.ieee.org/abstract/document/1044366. Accessed 28 febrero 2019

  26. Andrea, C.C., Byron, J.Q., Jorge, P.I., Inti, T.C.H., Aguilar, W.G.: Geolocation and counting of people with aerial thermal imaging for rescue purposes. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10850, pp. 171–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95270-3_12

    Chapter  Google Scholar 

  27. Zhao, J.-S., Liu, X., Feng, Z.-J., Dai, J.S.: ResearchGate, 7 enero 2013. https://www.researchgate.net/publication/265755401_Design_of_an_Ackermann_Type_Steering_Mechanism. Accessed 11 marzo 2019

  28. Fulgenzi, C., Spalanzani, A., Laugier, C., Tay, C.: HAL-Inria, 19 Oct 2010. https://hal.inria.fr/inria-00526601/. Accessed 25 Apr 2019

Download references

Acknowledgment

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, W.G., Sandoval, S., Limaico, A., Villegas-Pico, M., Asimbaya, I. (2019). Path Planning Based Navigation Using LIDAR for an Ackerman Unmanned Ground Vehicle. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11744. Springer, Cham. https://doi.org/10.1007/978-3-030-27541-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27541-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27540-2

  • Online ISBN: 978-3-030-27541-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics