Advertisement

A General Kinematics Model for Trajectory Planning of Upper Limb Exoskeleton Robots

  • Qiaoling Meng
  • Qiaolian Xie
  • Zhimeng Deng
  • Hongliu YuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11745)

Abstract

Trajectory planning is a paramount requirement for upper limb rehabilitation robots because that can help stroke patients to receive rehabilitation training, especially in the implementation of activities of daily life. The patient-customized trajectory planning of the robot system is much more fit with human movement. This paper proposes an equivalent kinematics model of the upper limb, which covers all degrees of freedom of the upper limb. The trajectory planning based on this kinematics model is appropriate for upper limb exoskeleton rehabilitation or assistive robots. In addition, the proposed model has been experimentally validated on the prototype of an upper limb exoskeleton robot. The model of the exoskeleton is obtained by simplifying extra degrees of freedom of the kinematics model. And taking movement trajectory of the exoskeleton by cubic polynomial coincides with that by quintic polynomials, which proves that the approach can optimize the approach of trajectory planning. Furthermore, a significant reduction of trajectory generated operation can be achieved, with a consequent remarkable computational time-saving. Finally, results from taking things experiments with the exoskeleton are presented, which verify the usability of trajectory planning.

Keywords

Trajectory planning Kinematics model Exoskeleton Rehabilitation 

References

  1. 1.
    Lauretti, C., Cordella, F., Guglielmelli, E., Zollo, L.: Learning by demonstration for planning activities of daily living in rehabilitation and assistive robotics. IEEE Robot. Autom. Lett. 2(3), 1375–1382 (2017).  https://doi.org/10.1109/LRA.2017.2669369CrossRefGoogle Scholar
  2. 2.
    Harischandra, P.A.D., Abeykoon, A.M.H.S.: Development of an upper limb master-slave robot for bimanual rehabilitation. In: 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, pp. 52–57 (2017).  https://doi.org/10.1109/mercon.2017.7980455
  3. 3.
    Soltani-Zarrin, R., Zeiaee, A., Langari, R., Robson, N.: Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms. In: 2017 ICORR, London, pp. 753–758 (2017).  https://doi.org/10.1109/icorr.2017.8009338
  4. 4.
    Xu, H., Ding, X.: Human-like motion planning for a 4-DOF anthropomorphic arm based on arm’s inherent characteristics. Int. J. Humanoid Robot. 14(4) (2017).  https://doi.org/10.1142/s0219843617500050CrossRefGoogle Scholar
  5. 5.
    Fekrache, D., Guiatni, M.: Kinematics and design of a 5 DoF exoskeleton for the rehabilitation of the upper limb. In: 2015 4th ICEE, Boumerdes, pp. 1–5 (2015).  https://doi.org/10.1109/intee.2015.7416752
  6. 6.
    Rahman, M.H., et al.: Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33(1), 19–39 (2015).  https://doi.org/10.1017/s0263574714000034CrossRefGoogle Scholar
  7. 7.
    Guo, X., Wang, W., Yan, H.: The trajectory planning and simulation of exoskeleton upper limb rehabilitation robot. China: J. Qingdao Univ. (Nat. Sci. Edn.) 28(3), 65–69 (2015).  https://doi.org/10.3969/j.issn.1006-1037.2015.08.14
  8. 8.
    Tsai, B.C., Wang, W.W., Hsu, L.C., et al.: An articulated rehabilitation robot for upper limb physiotherapy and training. In: 2010 IEEE/RSJ, Taipei, pp. 1470–1475 (2010).  https://doi.org/10.1109/iros.2010.5649567
  9. 9.
    Miao, Q., Mcdaid, A., Zhang, M.: A three-stage trajectory generation method for robot-assisted bilateral upper limb training with subject-specific adaptation. Robot. Auton. Syst. 105, 38–46 (2018).  https://doi.org/10.1016/j.robot.2018.03.010CrossRefGoogle Scholar
  10. 10.
    Schiele, A., van der Helm, F.C.T.: Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006).  https://doi.org/10.1109/TNSRE.2006.881565CrossRefGoogle Scholar
  11. 11.
    Aili, Z.: Analysis and Simulation of Human Upper Limb Motion Based on MATLAB. Tianjin University of Science and Technology, Tianjin (2003)Google Scholar
  12. 12.
    Robson, P., Langari, R., Buchanan, J.J.: Experimental observations on the human arm motion planning under an elbow joint constraint. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 3870–3873 (2012)Google Scholar
  13. 13.
    Zhang, J., Cheah, C.C.: Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots. IEEE Tran. Robot. 31(2), 233–245 (2015).  https://doi.org/10.1109/tro.2015.2392451CrossRefGoogle Scholar
  14. 14.
    Guidali, M., Büchel, M., Klamroth, V., et al.: Trajectory planning in ADL tasks for an exoskeletal arm rehabilitation robot. In: Technically Assisted Rehabilitation, TAR 2009; 2nd European Conference, 18–19 March 2009, Deutsche Gesellschaft für Biomedizinische Technik, Berlin (2009)Google Scholar
  15. 15.
    Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Tran. Ind. Electron. 47(1), 140–149 (2000).  https://doi.org/10.1109/41.824136CrossRefGoogle Scholar
  16. 16.
    Loureiro, R., Amirabdollahian, F., Topping, M.: Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robots 15(1), 35–51 (2003).  https://doi.org/10.1023/a:1024436732030CrossRefGoogle Scholar
  17. 17.
    Loconsole, C., Banno, F., Frisoli, A., et al.: A new kinect-based guidance mode for upper limb robot-aided neurorehabilitation. In: IEEE/RSJ, Vilamoura, Algarve, Portugal, October 2012Google Scholar
  18. 18.
    Rahman, M.H., Kittel-Ouimet, T., Saad, M., et al.: Dynamic modeling and evaluation of a robotic exoskeleton for upper-limb rehabilitation. Int. J. Inf. Acquisition 8(1), 83–102  https://doi.org/10.1142/s0219878911002367CrossRefGoogle Scholar
  19. 19.
    Pronk, G.M.: The shoulder girdle, analysed and modelled kinematically (1991)Google Scholar
  20. 20.
    Helm, F.C.T.V.D.: A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27(5), 551–569 (1994).  https://doi.org/10.1016/0021-9290(94)90065-5CrossRefGoogle Scholar
  21. 21.
    Maurel, W., et al.: A biomechanical musculoskeletal model of human upper limb for dynamic simulation. In: 5th IEEE EMBS International Summer School on Biomedical Imaging, Berder Island, pp. 121–136 (2002)Google Scholar
  22. 22.
    Klopcar, N., Lenarc, J.: Bilateral and unilateral shoulder girdle kinematics during humeral elevation. Clin. Biomech. 21(Suppl. 1), S20–S26 (2006).  https://doi.org/10.1016/j.clinbiomech.2005.09.009CrossRefGoogle Scholar
  23. 23.
    Laitenberger, M., Raison, M., Périé, D., et al.: Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody Syst. Dyn. 33(4), 413–438 (2015).  https://doi.org/10.1007/s11044-014-9421-zMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wenbin, C.: Human Upper Limb Kinematics Analysis and Humanoid Limb Design and Motion Planning. Huazhong University of Science and Technology, China (2012)Google Scholar
  25. 25.
    Bertomeu-Motos, A., et al.: Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. J. NeuroEngineering Rehabil. 15(10) (2018).  https://doi.org/10.1186/s12984-018-0348-0
  26. 26.
    Piña-Martínez, E., Ricardo, R., Salvador, L.M., et al.: Vision system-based design and assessment of a novel shoulder joint mechanism for an enhanced workspace upper limb exoskeleton. Appl. Bionics Biomech. 2018, 1–14 (2018). ID. 6019381.  https://doi.org/10.1155/2018/6019381CrossRefGoogle Scholar
  27. 27.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Forward and inverse kinematics. In: Robot Modeling and Control, 2nd edn, pp. 65–103. Wiley, Hoboken (2005)Google Scholar
  28. 28.
    Lin, B., Zhang, H., Guo, Z., et al.: The movement characteristics of acromioclavicular joints in normal Chinese people. China: J. Clin. Orthopaedics 12(14), 451–454 (2009).  https://doi.org/10.3969/j.issn.1008-0287.2009.04.038

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qiaoling Meng
    • 1
    • 2
    • 3
  • Qiaolian Xie
    • 1
    • 2
    • 3
  • Zhimeng Deng
    • 1
    • 2
    • 3
  • Hongliu Yu
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Rehabilitation Engineering and TechnologyUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Shanghai Engineering Research Center of Assistive DevicesShanghaiPeople’s Republic of China
  3. 3.Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil AffairsShanghaiPeople’s Republic of China

Personalised recommendations