Advertisement

Long-Term Real-Time Correlation Filter Tracker for Mobile Robot

  • Shaoze You
  • Hua ZhuEmail author
  • Menggang Li
  • Lei Wang
  • Chaoquan Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11740)

Abstract

Computer vision has received a significant attention in recent years, which is one of the important parts for robots to apperceive external environment. Discriminative Correlation Filter (DCF) based trackers gained more popularity due to their efficiency, however, most of the-state-of-the-art trackers are effective for short-term tracking, not yet successfully addressed in long-term scene. In this work, we tackle the problems by introducing Long-term Real-time Correlation Filter (LRCF) tracker. First, fused features only including HOG and Color Names are employed to boost the tracking efficiency. Second, we used the standard principal component analysis (PCA) to reduction scheme in the translation and scale estimation phase for accelerating. Third, we learned a long-term correlation filter to keep the long-term memory ability. Finally, we update the filter with interval updates. The extensive experiments on popular Object Tracking Benchmark OTB-2013 datasets have demonstrated that the proposed tracker outperforms the state-of-the-art trackers significantly achieves a high real-time (33FPS) performance in our mobile robot hardware. The experimental results show that the novel tracker performance is better than the-state-of-the-art trackers.

Keywords

Object tracking Correlation filter Long-term tracking Robot 

Notes

Acknowledgments

This work has been supported by grant of the National Key Research and Development Program of China (No. 2018YFC0808000) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.

References

  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)CrossRefGoogle Scholar
  2. 2.
    Li, X., Hu, W., Shen, C., et al.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 58 (2013)Google Scholar
  3. 3.
    Xu, K., Chia, K.W., Cheok, A.D.: Real-time camera tracking for marker-less and unprepared augmented reality environments. Image Vis. Comput. 26(5), 673–689 (2008)CrossRefGoogle Scholar
  4. 4.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., et al.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)Google Scholar
  5. 5.
    Henriques, J.F., Caseiro, R., Martins, P., et al.: High-speed tracking with Kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)CrossRefGoogle Scholar
  6. 6.
    Lukezic, A., Vojir, T., Cehovin Zajc, L., et al.: Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6309–6318 (2017)Google Scholar
  7. 7.
    Kiani Galoogahi, H., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1135–1143 (2017)Google Scholar
  8. 8.
    Danelljan, M., Bhat, G., Shahbaz Khan, F., et al.: ECO: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6638–6646 (2017)Google Scholar
  9. 9.
    Zhang, M., Liu, X., Xu, D., et al.: Vision-based target-following guider for mobile robot. IEEE Trans. Ind. Electron. PP(99), 1 (2019)Google Scholar
  10. 10.
    Bedaka, A.K., Vidal, J., Lin, C.Y.: Automatic robot path integration using three-dimensional vision and offline programming. Int. J. Adv. Manuf. Technol. 8, 1–16 (2019)Google Scholar
  11. 11.
    Wang, X.: Autonomous mobile robot visual SLAM based on improved CNN method. In: IOP Conference Series Materials Science and Engineering, vol. 466, p. 012114 (2018)CrossRefGoogle Scholar
  12. 12.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with Kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33765-9_50CrossRefGoogle Scholar
  13. 13.
    Danelljan, M., Khan, F.S., Felsberg, M., et al.: Adaptive color attributes for real-time visual tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2014)Google Scholar
  14. 14.
    Zhang, Z., Xie, Y., Xing, F., et al.: MDNet: a semantically and visually interpretable medical image diagnosis network (2017)Google Scholar
  15. 15.
    Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48881-3_56CrossRefGoogle Scholar
  16. 16.
    Valmadre, J., Bertinetto, L., Henriques, J., et al.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2805–2813 (2017)Google Scholar
  17. 17.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  18. 18.
    Ma, C., Yang, X., Zhang, C., et al.: Long-term correlation tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)Google Scholar
  19. 19.
    Ma, C., Huang, J.B., Yang, X.: Adaptive correlation filters with long-term and short-term memory for object tracking. Int. J. Comput. Vis. 126(8), 771–796 (2018)CrossRefGoogle Scholar
  20. 20.
    Zhu, G., Wang, J., Wu, Y., et al.: Collaborative correlation tracking (2015)Google Scholar
  21. 21.
    Danelljan, M., Häger, G., Khan, F.S.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4021–4029 (2017)Google Scholar
  23. 23.
    Zhang, Y., Yang, Y., Zhou, W.: Motion-aware correlation filters for online visual tracking. Sensors 18(11), 3937 (2018)CrossRefGoogle Scholar
  24. 24.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shaoze You
    • 1
    • 2
  • Hua Zhu
    • 1
    • 2
    Email author
  • Menggang Li
    • 1
    • 2
  • Lei Wang
    • 1
    • 2
  • Chaoquan Tang
    • 1
    • 2
  1. 1.School of Mechanical and Electrical EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Jiangsu Collaborative Innovation Center of Intelligent Mining EquipmentChina University of Mining and TechnologyXuzhouChina

Personalised recommendations