Screw Displacement and Its Application to the In Vivo Identification of Finger Joint Axes

  • Yiming Zhu
  • Zirong Luo
  • Guowu WeiEmail author
  • Lei Ren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11740)


This paper provides the exponential derivation of screw displacement and its application in the identification of rotation axes of finger joints. Expressions of screw displacement, including the Rodrigues’ formulae for rotation and general spatial displacement, are derived in details with matrix exponential method in a note form. Then an in vivo approach based on a gyroscope sensor and Arduino board is proposed to determining the joint axes of human finger. The experimental results are feasible comparison with the results obtained through traditional methods in literature.


Screw displacement Rodrigues formula Axes of rotation Human finger 


  1. 1.
    Bottema, O., Roth, B.: Theoretical Kinematics. North Holland Publishing Company, Amsterdam (1979)zbMATHGoogle Scholar
  2. 2.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  3. 3.
    Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar
  4. 4.
    Selig, J.M.: Geometric Fundamentals of Robotics, 2nd edn. Springer, New York (2005). Scholar
  5. 5.
    Uicker, J.J., Sheth, P.N., Ravani, B.: Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems. Cambridge University Press, New York (2013)CrossRefGoogle Scholar
  6. 6.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2013)CrossRefGoogle Scholar
  7. 7.
    Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control. Cambridge University Press, New York (2017)Google Scholar
  8. 8.
    Brockett, R.W.: Robotic manipulators and the product of exponentials formula. In: Fuhrmann, P.A. (ed.) Mathematical Theory of Networks and Systems. LNCIS, vol. 58, pp. 120–129. Springer, Heidelberg (1984). Scholar
  9. 9.
    Park, F.C., Eobrow, J.E., Ploen, S.R.: A lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)CrossRefGoogle Scholar
  10. 10.
    Gallier, J., Xu, D.: Computing exponential of skew-symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 17(4), 1–11 (2002)zbMATHGoogle Scholar
  11. 11.
    Dai, J.S.: Finite displacement screw operators with embedded Chalses’ motion. J. Mech. Robot. Trans. ASME 44, 041002 (2012)CrossRefGoogle Scholar
  12. 12.
    Dai, J.S.: Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 92, 144–152 (2015)CrossRefGoogle Scholar
  13. 13.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education Inc., Upper Saddle River (2005)Google Scholar
  14. 14.
    Denavit, J., Hartenberg, R.S.: A kinematic notation for lower pair mechanisms based on matrices. ASME J. Appl. Mech. 77, 215–221 (1955)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Brand, P.W., Hollister, A.M.: Clinical Mechanics of the Hand, 3rd edn. Mosby Inc., St. Louis (1999)Google Scholar
  16. 16.
    Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320, 188–193 (1995)Google Scholar
  17. 17.
    Chang, L.Y., Pollard, N.S.: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans. Biomed. Eng. 55(7), 1897–1906 (2008)CrossRefGoogle Scholar
  18. 18.
    Dumont, C., Albus, G., Kubein-Meesenburg, D., Fanghänel, J., Stürmer, K.M., Nägerl, H.: Morphology of the interphalangeal joint surface and its functional relevance. J. Hand Surg. 33(1), 9–18 (2008)CrossRefGoogle Scholar
  19. 19.
    Chao, E.Y.S., An, K.-N., Cooney III, P.W., Linscheid, R.L.: Boimechanics of the Hand: A Basic Research Study. World Scientific Publishing Co., Pte. Ltd., Farrer Road, Singapore (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical, Aerospace and Civil EngineeringThe University of ManchesterManchesterUK
  2. 2.College of Mechatronic Engineering and AutomationNational University of Defense TechnologyChangshaPeople’s Republic of China
  3. 3.School of Computing, Science and EngineeringUniversity of SalfordSalfordUK

Personalised recommendations