Skip to main content

Efficiently Computing Homomorphic Matches of Hybrid Pattern Queries on Large Graphs

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11708)

Abstract

In this paper, we address the problem of efficiently finding homomorphic matches for hybrid patterns over large data graphs. Finding matches for patterns in data graphs is of fundamental importance for graph analytics. In hybrid patterns, each edge may correspond either to an edge or a path in the data graph, thus allowing for higher expressiveness and flexibility in query formulation. We introduce the concept of answer graph to compactly represent the query results and exploit computation sharing. We design a holistic bottom-up algorithm called GPM, which greatly reduces the number of intermediate results, leading to significant performance gains. GPM directly processes child constraints in the given query instead of resorting to a post-processing procedure. An extensive experimental evaluation using both real and synthetic datasets shows that our methods evaluate hybrid patterns up to several orders of magnitude faster than existing algorithms and exhibit much better scalability.

The research of the first author was supported by the National Natural Science Foundation of China under Grant No. 61872276.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-27520-4_20
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-27520-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    xml-benchmark.org.

  2. 2.

    citeseerx.ist.psu.edu.

References

  1. Barceló, P., Libkin, L., Reutter, J.L.: Querying graph patterns. In: PODS (2011)

    Google Scholar 

  2. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD (2002)

    Google Scholar 

  3. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on DAGs. In: VLDB (2005)

    Google Scholar 

  4. Cheng, J., Yu, J.X., Yu, P.S.: Graph pattern matching: a join/semijoin approach. IEEE Trans. Knowl. Data Eng. 23(7), 1006–1021 (2011)

    CrossRef  Google Scholar 

  5. Cheng, J., Zeng, X., Yu, J.X.: Top-k graph pattern matching over large graphs. In: ICDE, pp. 1033–1044 (2013)

    Google Scholar 

  6. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. PVLDB 3(1), 264–275 (2010)

    Google Scholar 

  7. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for graph matching. PVLDB 3(1), 1161–1172 (2010)

    Google Scholar 

  8. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. In: AAAI FS, vol. 6, pp. 45–53 (2006)

    Google Scholar 

  9. Grimsmo, N., Bjørklund, T.A., Hetland, M.L.: Fast optimal twig joins. PVLDB 3(1), 894–905 (2010)

    Google Scholar 

  10. Liang, R., Zhuge, H., Jiang, X., Zeng, Q., He, X.: Scaling hop-based reachability indexing for fast graph pattern query processing. IEEE Trans. Knowl. Data Eng. 26(11), 2803–2817 (2014)

    CrossRef  Google Scholar 

  11. Olteanu, D., Schleich, M.: Factorized databases. SIGMOD Rec. 45(2), 5–16 (2016)

    CrossRef  Google Scholar 

  12. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

    Google Scholar 

  13. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster? IEEE Trans. Knowl. Data Eng. 29(3), 683–697 (2017)

    CrossRef  Google Scholar 

  14. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node graphs. PVLDB 5(9), 788–799 (2012)

    Google Scholar 

  15. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    MathSciNet  CrossRef  Google Scholar 

  16. Wang, H., Li, J., Luo, J., Gao, H.: Hash-base subgraph query processing method for graph-structured XML documents. PVLDB (2008)

    Google Scholar 

  17. Wu, X., Theodoratos, D., Skoutas, D., Lan, M.: Evaluating mixed patterns on large data graphs using bitmap views. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 553–570. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_33

    CrossRef  Google Scholar 

  18. Zeng, Q., Jiang, X., Zhuge, H.: Adding logical operators to tree pattern queries on graph-structureddata. PVLDB 5(8), 728–739 (2012)

    Google Scholar 

  19. Zeng, Q., Zhuge, H.: Comments on “stack-based algorithms for pattern matching on dags”. PVLDB 5(7), 668–679 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Theodoratos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Theodoratos, D., Skoutas, D., Lan, M. (2019). Efficiently Computing Homomorphic Matches of Hybrid Pattern Queries on Large Graphs. In: Ordonez, C., Song, IY., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2019. Lecture Notes in Computer Science(), vol 11708. Springer, Cham. https://doi.org/10.1007/978-3-030-27520-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27520-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27519-8

  • Online ISBN: 978-3-030-27520-4

  • eBook Packages: Computer ScienceComputer Science (R0)