Skip to main content

Endurance and Brain Glycogen: A Clue Toward Understanding Central Fatigue

  • Chapter
  • First Online:
Brain Glycogen Metabolism

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 23))

Abstract

Brain glycogen stored in astrocytes produces lactate as a neuronal energy source transported by monocarboxylate transporters (MCTs) to maintain neuronal functions, such as hippocampus-regulated memory formation. Although exercise activates brain neurons, the role of astrocytic glycogen in the brain during exercise remains unknown. Since muscle glycogen fuels active muscles during exercise, we hypothesized that astrocytic glycogen plays an energetic role in the brain during exercise to maintain endurance capacity through lactate transport. To explore this hypothesis, we have used a rat model of prolonged exercise, microwave irradiation for the accurate detection of brain glycogen, capillary electrophoresis-mass spectrometry-based metabolomics, and inhibitors of glycogenolysis (1,4-dideoxy-1,4-imino-d-arabinitol; DAB) and lactate transport (α-cyano-4-hydroxycinnamate; 4-CIN). During prolonged exhaustive exercise, muscle glycogen was depleted and brain glycogen decreased when associated with decreased blood glucose levels and increased serotonergic activity known as central fatigue factors, suggesting brain glycogen decrease as an integrative factor for central fatigue. Prolonged exhaustive exercise also increased MCT2 protein in the brain, which takes up lactate in neurons, just as muscle MCTs are increased. Metabolomics revealed that brain but not muscle adenosine triphosphate (ATP) was maintained with lactate and other glycogenolytic and glycolytic sources. Intracerebroventricular (icv) injection of DAB suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An icv injection of 4-CIN also decreased hippocampal ATP, resulting in lower endurance capacity. Our findings provide direct evidence that astrocytic glycogen-derived lactate fuels the brain to maintain endurance capacity during exhaustive exercise. Brain ATP levels maintained by glycogen might serve as a possible defense mechanism for neurons in the exhausted state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-CIN:

α-Cyano-4-hydroxycinnamate

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

5-Hydroxytryptamine (serotonin)

AAA:

Aromatic amino acid

AMP:

Adenosine monophosphate

ATP:

Adenosine triphosphate

BCAA:

Branched-chain amino acid

DAB:

1,4-Dideoxy-1,4-imino-d-arabinitol

F1-6P:

Fructose-1, 6-bisphosphate

fMRI:

Functional magnetic resonance imaging

GLUT:

Glucose transporter

icv:

Intracerebroventricular

IMP:

Inosine monophosphate

MCT:

Monocarboxylate transporter

MHPG:

Methoxyhydroxyphenylglycol

MI:

Microwave irradiation

NA:

Noradrenaline

PCr:

Phosphocreatine

TCA:

Tricarboxylic acid

References

  • Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  CAS  PubMed  Google Scholar 

  • Broberg S, Sahlin K (1989) Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985) 67:116–122

    Article  CAS  Google Scholar 

  • Chan O, Paranjape SA, Horblitt A, Zhu W, Sherwin RS (2013) Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes 62:4239–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G (2010) Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 30:15298–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles L, Litt J, Hatta H, Bonen A (2004) Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle. J Physiol 561:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotel F, Exley R, Cragg SJ, Perrier JF (2013) Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation. Proc Natl Acad Sci U S A 110:4774–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S (2015) Locomotion, Theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal glutamatergic circuit. Neuron 86:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS (2008) Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyes MP, Papagapiou M, Leonard C, Markey SP, Auer RN (1990) Brain and plasma quinolinic acid in profound insulin-induced hypoglycemia. J Neurochem 54:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Hyodo K, Dan I, Kyutoku Y, Suwabe K, Byun K, Ochi G, Kato M, Soya H (2016) The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization. NeuroImage 125:291–300

    Article  PubMed  Google Scholar 

  • Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol 522:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A (1999) Ageing, fitness and neurocognitive function. Nature 400:418–419

    Article  CAS  PubMed  Google Scholar 

  • Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB (2008) Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol 586:2807–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Rodriguez F, Wilson CL, Maidment NT, Poland RE, Engel J (2003) Total sleep deprivation increases extracellular serotonin in the rat hippocampus. Neuroscience 121:523–530

    Article  CAS  PubMed  Google Scholar 

  • Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, Kaelin V, Zuend M, San Martin A, Romero-Gomez I, Baeza-Lehnert F, Lengacher S, Schneider BL, Aebischer P, Magistretti PJ, Barros LF, Weber B (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23:94–102

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete Metab 14:237–246

    CAS  PubMed  Google Scholar 

  • Matsui T, Soya H (2013) Brain glycogen decrease and supercompensation with exhaustive exercise. In: Hall PA (ed) Social neuroscience and public health. Springer, New York, pp 253–264

    Chapter  Google Scholar 

  • Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H (2011) Brain glycogen decreases during prolonged exercise. J Physiol 589:3383–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Omuro H, Liu YF, Soya M, Shima T, McEwen BS, Soya H (2017) Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A 114:6358–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsholme EA, Blomstrand E, Ekblom B (1992) Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. Br Med Bull 48:477–495

    Article  CAS  PubMed  Google Scholar 

  • Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261

    Article  PubMed  Google Scholar 

  • O'Dowd BS, Gibbs ME, Ng KT, Hertz E, Hertz L (1994) Astrocytic glycogenolysis energizes memory processes in neonate chicks. Brain Res Dev Brain Res 78:137–141

    Article  CAS  PubMed  Google Scholar 

  • Oz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE, Seaquist ER (2009) Human brain glycogen metabolism during and after hypoglycemia. Diabetes 58:1978–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE, Seaquist ER (2012) Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 32:256–263

    Article  PubMed  CAS  Google Scholar 

  • Oz G, DiNuzzo M, Kumar A, Moheet A, Khowaja A, Kubisiak K, Eberly LE, Seaquist ER (2017) Cerebral glycogen in humans following acute and recurrent hypoglycemia: implications on a role in hypoglycemia unawareness. J Cereb Blood Flow Metab 37:2883–2893

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perciavalle V, Maci T, Perciavalle V, Massimino S, Coco M (2015) Working memory and blood lactate levels. Neurol Sci 36:2129–2136

    Article  PubMed  Google Scholar 

  • Peters A, Schweiger U, Pellerin L, Hubold C, Oltmanns KM, Conrad M, Schultes B, Born J, Fehm HL (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28:143–180

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Tonkonogi M, Soderlund K (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur J Appl Physiol Occup Physiol 80:417–422

    Article  CAS  PubMed  Google Scholar 

  • Secher NH, Seifert T, Van Lieshout JJ (2008) Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 104:306–314

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  • Sugiura Y, Taguchi R, Setou M (2011) Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 6:e17952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007a) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R∗,S∗]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321:45–50

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Hamby AM, Swanson RA (2007b) Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia 55:1280–1286

    Article  PubMed  Google Scholar 

  • Suwabe K, Hyodo K, Byun K, Ochi G, Yassa MA, Soya H (2017) Acute moderate exercise improves mnemonic discrimination in young adults. Hippocampus 27:229–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Lane S, Korsak A, Paton JF, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissing J, Andersen M, Diemer NH (1996) Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 16:729–736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by special funds for Education and Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) granted to the Human High Performance (HHP) Research Project; the Team “Nippon” Multi-Support project; grants from the Japan Society for the Promotion of Science (JSPS) to the Global Initiative for Sports Neuroscience (GISN): For Development of Exercise Prescription Enhancing Cognitive Functions; and JSPS Grants-in-Aid for Scientific Research A, Challenging Exploratory Research, JSPS Fellow (Superlative Post-Doc), and Young Scientist A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Matsui or Hideaki Soya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsui, T., Soya, M., Soya, H. (2019). Endurance and Brain Glycogen: A Clue Toward Understanding Central Fatigue. In: DiNuzzo, M., Schousboe, A. (eds) Brain Glycogen Metabolism. Advances in Neurobiology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-27480-1_11

Download citation

Publish with us

Policies and ethics