Advertisement

A Systematic Comparison of Search Algorithms for Topic Modelling—A Study on Duplicate Bug Report Identification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11664)

Abstract

Latent Dirichlet Allocation (LDA) has been used to support many software engineering tasks. Previous studies showed that default settings lead to sub-optimal topic modeling with a dramatic impact on the performance of such approaches in terms of precision and recall. For this reason, researchers used search algorithms (e.g., genetic algorithms) to automatically configure topic models in an unsupervised fashion. While previous work showed the ability of individual search algorithms in finding near-optimal configurations, it is not clear to what extent the choice of the meta-heuristic matters for SE tasks. In this paper, we present a systematic comparison of five different meta-heuristics to configure LDA in the context of duplicate bug reports identification. The results show that (1) no master algorithm outperforms the others for all software projects, (2) random search and PSO are the least effective meta-heuristics. Finally, the running time strongly depends on the computational complexity of LDA while the internal complexity of the search algorithms plays a negligible role.

Keywords

Topic modeling Latent Dirichlet Allocation Search-based Software Engineering Evolutionary Algorithms Duplicate Bug Report 

References

  1. 1.
    Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how to fix it using search-based software engineering. Inf. Softw. Technol. 98, 74–88 (2018)CrossRefGoogle Scholar
  2. 2.
    Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models for recovering traceability links between code and documentation. In: The 16th IEEE International Conference on Software Maintenance, pp. 40–51 (2000)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Boston (1999)Google Scholar
  4. 4.
    Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Binkley, D., Lawrie, D.: Information retrieval applications in software maintenance and evolution. Encycl. Softw. Eng. 454–463 (2009)Google Scholar
  6. 6.
    Binkley, D., Heinz, D., Lawrie, D., Overfelt, J.: Source code analysis with lda. J. Softw. Evol. Process 28(10), 893–920 (2016)CrossRefGoogle Scholar
  7. 7.
    Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software Data. Elsevier, Amsterdam (2015)Google Scholar
  8. 8.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  9. 9.
    Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical evaluation of evolutionary algorithms for unit test suite generation. Inf. Softw. Technol. 104, 207–235 (2018)CrossRefGoogle Scholar
  10. 10.
    Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role of the nouns in IR-based traceability recovery. In: The 17th IEEE International Conference on Program Comprehension (2009)Google Scholar
  11. 11.
    De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using IR methods for labeling source code artifacts: Is it worthwhile? In: The 20th IEEE International Conference on Program Comprehension (ICPC), pp. 193–202 (2012)Google Scholar
  12. 12.
    De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling source code with information retrieval methods: an empirical study. Empirical Softw. Eng. 19(5), 1383–1420 (2014)CrossRefGoogle Scholar
  13. 13.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: The 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  14. 14.
    Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to automatically split identifiers for software analysis. In: The 6th International Working Conference on Mining Software Repositories, pp. 71–80 (2009)Google Scholar
  15. 15.
    García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)CrossRefGoogle Scholar
  16. 16.
    Grant, S., Cordy, J.R.: Estimating the optimal number of latent concepts in source code analysis. In: The 10th International Working Conference on Source Code Analysis and Manipulation, pp. 65–74 (2010)Google Scholar
  17. 17.
    Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101(Suppl. 1), 5228–5235 (2004)CrossRefGoogle Scholar
  18. 18.
    Grün, B., Hornik, K.: Topicmodels: an R package for fitting topic models. J. Stat. Softw. 40(13), 1–30 (2011)CrossRefGoogle Scholar
  19. 19.
    Hegerty, B., Hung, C.C., Kasprak, K.: A comparative study on differential evolution and genetic algorithms for some combinatorial problems. In: The 8th Mexican International Conference on Artificial Intelligence, pp. 9–13 (2009)Google Scholar
  20. 20.
    Hindle, A., Onuczko, C.: Preventing duplicate bug reports by continuously querying bug reports. Empirical Softw. Eng. 24(2), 902–936 (2019)CrossRefGoogle Scholar
  21. 21.
    Hughes, M., Kim, D.I., Sudderth, E.: Reliable and scalable variational inference for the hierarchical dirichlet process. In: Artificial Intelligence and Statistics, pp. 370–378 (2015)Google Scholar
  22. 22.
    Lee, J., Kim, D., Bissyandé, T.F., Jung, W., Le Traon, Y.: Bench4bl: reproducibility study on the performance of IR-based bug localization. In: The 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 61–72. ACM (2018)Google Scholar
  23. 23.
    Manfred Gilli, D.M., Schumann, E.: Numerical Methods and Optimization in Finance (NMOF) (2011)CrossRefGoogle Scholar
  24. 24.
    Mantyla, M.V., Claes, M., Farooq, U.: Measuring lda topic stability from clusters of replicated runs. In: The 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, p. 49. ACM (2018)Google Scholar
  25. 25.
    Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model. In: The 18th Conference on Uncertainty in Artificial Intelligence, pp. 352–359. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  26. 26.
    Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40(6), 1–26 (2011)CrossRefGoogle Scholar
  27. 27.
    Nguyen, A.T., Nguyen, T.T., Nguyen, T.N., Lo, D., Sun, C.: Duplicate bug report detection with a combination of information retrieval and topic modeling. In: The 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 70–79 (2012)Google Scholar
  28. 28.
    Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: How to effectively use topic models for software engineering tasks? An approach based on genetic algorithms. In: The International Conference on Software Engineering, pp. 522–531. IEEE Press (2013)Google Scholar
  29. 29.
    Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: Parameterizing and assembling IR-based solutions for se tasks using genetic algorithms. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 314–325. IEEE (2016)Google Scholar
  30. 30.
    Panichella, S., Panichella, A., Beller, M., Zaidman, A., Gall, H.C.: The impact of test case summaries on bug fixing performance: an empirical investigation. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 547–558, May 2016Google Scholar
  31. 31.
    Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast collapsed gibbs sampling for latent dirichlet allocation. In: The 14th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 569–577. ACM (2008)Google Scholar
  32. 32.
    Richter, J.: Randomsearch: Random Search for Expensive Functions (2019)Google Scholar
  33. 33.
    Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)CrossRefGoogle Scholar
  34. 34.
    Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards automatically generating summary comments for java methods. In: The 25th IEEE/ACM International Conference on Automated Software Engineering, pp. 43–52. ACM Press (2010)Google Scholar
  35. 35.
    Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing: Theory and applications, pp. 7–15, vol 37. Springer, Dordrecht (1987).  https://doi.org/10.1007/978-94-015-7744-1_2CrossRefGoogle Scholar
  37. 37.
    Wei, X., Croft, W.B.: Lda-based document models for ad-hoc retrieval. In: The 29th Annual International Conference on Research and Development in Information Retrieval, pp. 178–185. ACM (2006)Google Scholar
  38. 38.
    Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing for efficient global optimization: the GenSA package for R. R J. 5(1) (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations