Skip to main content

Engineering Polyamine Metabolic Pathways for Abiotic Stress Tolerance in Plants

Abstract

In the current scenario of climate change, plants are being challenged with frequent episodes of extreme weather events and suffer recurrently from various abiotic stresses that negatively affect growth and development and limit plant productivity. Abiotic stresses activate the expression of several stress-related genes, leading to the synthesis of active proteins and accumulation of metabolites, and other osmotically active compounds. Among these compounds, we can highlight the polyamines (PAs), interesting biomolecules that play an important role on plant physiology, development, and response to environment. PAs are low-molecular-weight, positively charged, aliphatic amines that are found widespread in living organisms. In plants, the most abundant PAs are putrescine (Put), spermidine (Spd), and spermine (Spm). They are synthesized from decarboxylation of amino acids, mainly arginine and ornithine. Put is synthesized primarily through the activity of the enzymes arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Put is then converted into Spd by spermidine synthase (SPDS), and Spd is further converted into Spm by Spm synthase (SPMS). PA levels in plants increase under a number of environmental stress conditions, including drought, high salinity, and exposure to extreme temperatures (heating or freezing). Numerous studies have provided evidences that enhanced accumulation of PAs in plants is correlated with increased resistance to adverse environmental conditions. In this chapter, we will provide a current state of the art on the works related to the development of plants with altered PA contents, by the manipulation of PA metabolic pathways through genetic engineering, and discussed the possible associated effects on several abiotic stresses.

Keywords

  • Abiotic stress
  • Tolerance
  • Drought
  • Salinity
  • Extreme temperatures
  • Transgenic plants
  • Manipulation polyamine metabolism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-27423-8_14
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-27423-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Alcázar R, García-Martínez JL, Cuevas JC, Tiburcio AF, Altabella T (2005) Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J 43:425–436. https://doi.org/10.1111/j.1365-313X.2005.02465.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    CrossRef  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  CrossRef  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas JC, Bitrián M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48(7):547–552

    PubMed  CrossRef  CAS  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandín FD, González ME, Carrasco P, Ruiz OA (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286. https://doi.org/10.4161/psb.6.2.14702

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Altabella T, Tiburcio AF, Ferrando A (2009) Plant with resistance to low temperature and method of production thereof. Spanish patent application; WO2010/004070; US patent application; No:2011/0126,322

    Google Scholar 

  • Anwar A, She M, Wang K, Riaz B, Ye X (2018) Biological roles of ornithine aminotransferase (OAT) in plant stress tolerance: present progress and future perspectives. Int J Mol Sci 19:3681. https://doi.org/10.3390/ijms19113681

    CAS  CrossRef  PubMed Central  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul 28:177–186. https://doi.org/10.1007/s00344-009-9086-7

    CAS  CrossRef  Google Scholar 

  • Araújo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V, Lejeune-Henaut I, Link W, Monteros MJ, Prats E, Rao I, Vadez V, Vaz Patto MC (2015) Abiotic stress responses in Legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280. https://doi.org/10.1080/07352689.2014.898450

    CAS  CrossRef  Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Chang Biol 17:997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x

    CrossRef  Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44:384–395. https://doi.org/10.1007/s11627-008-9176-4

    CAS  CrossRef  Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bokszczanin K, Fragkostefanakis S, Bostan H, Bovy A, Chaturvedi P, Chiusano M, Firon N, Iannacone R, Jegadeesan S, Klaczynskid K, Li H, Mariani C, Müller F, Paul P, Paupiere M, Pressman E, Rieu I, Scharf K, Schleiff E, Van Heusden A, Vriezen W, Weckwerth W, Winter P (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. https://doi.org/10.3389/fpls.2013.00315

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bor M, Özdemir F (2018) Manipulating metabolic pathways for development of salt-tolerant crops. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer International Publishing, Cham, pp 235–256

    CrossRef  Google Scholar 

  • Borrell A, Besford RT, Altabella T, Masgrau C, Tiburcio AF (1996) Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves. Physiol Plant 98:105–110

    CAS  CrossRef  Google Scholar 

  • Bouchereau A, Guénot P, Larher F (2000) Analysis of amines in plant materials. J Chromatogr B 747:49–67

    CAS  CrossRef  Google Scholar 

  • Burtin D, Michael AJ (1997) Over-expression of arginine decarboxylase in transgenic plants. Biochem J 325:331–337

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    CAS  CrossRef  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101(26):9909–9914

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Champa WAH, Gill MIS, Mahajan BVC, Bedi S (2015) Exogenous treatment of spermine to maintain quality and extend postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless under low temperature storage. LWT – Food Sci Technol 60:412–419. https://doi.org/10.1016/j.lwt.2014.08.044

    CAS  CrossRef  Google Scholar 

  • Channarayappa C, Biradar DP (2018) Soil basics, management, and rhizosphere engineering for sustainable agriculture. In: Channarayappa C, Biradar DP (eds) Abiotic stress: plants response to moisture and salt stresses. CRC Press, Boca Raton

    CrossRef  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34:477–483

    CAS  PubMed  CrossRef  Google Scholar 

  • Chattopadhyay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199

    PubMed  CrossRef  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen T, Li W, Hu X, Guo J, Liu A, Zhang B (2015) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56:917–929. https://doi.org/10.1093/pcp/pcv019

    CAS  CrossRef  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945. https://doi.org/10.3389/fpls.2018.01945

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499. https://doi.org/10.1111/j.1744-7909.2009.00816.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Cheng X-Q, Zhu X-F, Tian W-G, Cheng W-H, Hakim SJ, Jin S-X, Zhu H-G (2017) Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 129:237–249. https://doi.org/10.1007/s11240-017-1172-0

    CAS  CrossRef  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419–1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x

    CrossRef  PubMed  Google Scholar 

  • de Oliveira LF, Elbl P, Navarro BV, Macedo AF, dos Santos ALW, Floh EIS (2017) Elucidation of the polyamine biosynthesis pathway during Brazilian pine (Araucaria angustifolia) seed development. Tree Physiol 37(1):116–130

    PubMed  CrossRef  CAS  Google Scholar 

  • de Oliveira LF, Navarro BV, Cerruti GV, Elbl P, Minocha R, Minocha SC, dos Santos ALWS, Floh EIS (2018) Polyamine-and amino acid-related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol 59(5):1084–1098

    PubMed  CrossRef  CAS  Google Scholar 

  • DeScenso RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of a mouse ornithine decarboxylase cDNA. Plant Mol Biol 22:113–127

    CrossRef  Google Scholar 

  • Diao Q-N, Song Y-J, Shi D-M, Qi H-Y (2016) Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling. J Zhejiang Univ Sci B 17:916–930. https://doi.org/10.1631/jzus.B1600102

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Do PT, Drechsel O, Heyer AG, Hincha DK, Zuther E (2014) Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci 5:182. https://doi.org/10.3389/fpls.2014.00182

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. https://doi.org/10.1016/J.JPLPH.2007.11.006

    CAS  CrossRef  PubMed  Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, Santos D, Fevereiro P, Araújo SS (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K, Leslie C (eds) Abiotic stress – plant responses and applications in agriculture. InTech, Rijeka, pp 49–101

    Google Scholar 

  • Duque AS, López-Gómez M, Kráčmarová J, Gomes CN, Araújo SS, Lluch C, Fevereiro P (2016) Genetic engineering of polyamine metabolism changes Medicago truncatula responses to water deficit. Plant Cell Tissue Organ Cult 127:681–690. https://doi.org/10.1007/s11240-016-1107-1

    CAS  CrossRef  Google Scholar 

  • Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA (2014) Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem 76:29–35. https://doi.org/10.1016/J.PLAPHY.2013.12.018

    CAS  CrossRef  PubMed  Google Scholar 

  • Espasandin FD, Calzadilla PI, Maiale SJ, Ruiz OA, Sansberro PA (2018) Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. J Plant Growth Regul 37:156–165. https://doi.org/10.1007/s00344-017-9713-7

    CAS  CrossRef  Google Scholar 

  • Falahi H, Sharifi M, Chashmi NA, Maivan HZ (2018) Water stress alleviation by polyamines and phenolic compounds in Scrophularia striata is mediated by NO and H2O2. Plant Physiol Biochem 130:139–147. https://doi.org/10.1016/j.plaphy.2018.07.004

    CAS  CrossRef  PubMed  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945. https://doi.org/10.1007/s11738-009-0307-2

    CAS  CrossRef  Google Scholar 

  • Filippou P, Antoniou C, Fotopoulos V (2013) The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radic Biol Med 56:172–183

    CAS  PubMed  CrossRef  Google Scholar 

  • Flemetakis E, Efrose R-C, Desbrosses G, Dimou M, Delis C, Aivalakis G, Udvardi M-K, Katinakis P (2004) Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus. Mol Plant Microbe Interact 17:1283–1293

    CAS  PubMed  CrossRef  Google Scholar 

  • Flores HE (1991) Changes in polyamine metabolism in response to abiotic stress. In: Slocum R, Flores HE (eds) The biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 214–225

    Google Scholar 

  • Flores HE, Galston A (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Franceschetti M, Fornale S, Tassoni A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase over-expression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001

    CAS  PubMed  CrossRef  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gong B, Li X, Vanden Langenberg KM, Wen D, Sun S, Wei M, Li Y, Yang F, Shi Q, Wang X (2014) Overexpression of S-adenosyl- l -methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J 12:694–708. https://doi.org/10.1111/pbi.12173

    CAS  CrossRef  PubMed  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. https://doi.org/10.1007/s00726-007-0501-8

    CAS  CrossRef  PubMed  Google Scholar 

  • Grover A, Aggarwal PK, Kapoor A, Katiyar-Agarwal S, Agarwal M, Chandramouli A (2003) Addressing abiotic stresses in agriculture through transgenic technology. Curr Sci 84:355–367

    Google Scholar 

  • Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:1343. https://doi.org/10.3389/fpls.2016.01343

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ, Evan DM, Furze JM, Rhodes MJC (1990) Over-expression of a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    CAS  PubMed  CrossRef  Google Scholar 

  • Hanna WW (1995) Centipedegrass- diversity and vulnerability. Crop Sci 35:332–334. https://doi.org/10.2135/cropsci1995.0011183X003500020007x

    CrossRef  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256. https://doi.org/10.1093/emboj/19.16.4248

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Harshavardhan VT, Govind G, Kalladan R, Sreenivasulu N, Hong C-Y (2018) Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer International Publishing, Cham, pp 283–305

    CrossRef  Google Scholar 

  • Hassan FAS, Ali EF, Alamer KH (2018) Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascene Miller var. trigintipetala Dieck. S Afr J Bot 116:96–102

    CAS  CrossRef  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141. https://doi.org/10.1016/J.PHYTOCHEM.2008.05.015

    CAS  CrossRef  PubMed  Google Scholar 

  • He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171:779–788. https://doi.org/10.1016/j.jplph.2014.02.006

    CAS  CrossRef  PubMed  Google Scholar 

  • Islam MA, Hirata M (2005) Centipedegrass (Eremochloa ophiuroides (Munro) Hack.): growth behavior and multipurpose usages. Grassl Sci 51:183–190. https://doi.org/10.1111/j.1744-697X.2005.00014.x

    CrossRef  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants – a changing perspective. Physiol Plant 116:281–292. https://doi.org/10.1034/j.1399-3054.2002.1160302.x

    CAS  CrossRef  Google Scholar 

  • Kasinathan V, Wingler A (2002) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    CrossRef  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  CrossRef  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83. https://doi.org/10.5511/plantbiotechnology.23.75

    CAS  CrossRef  Google Scholar 

  • Khare T, Srivastav A, Shaikh S, Kumar V (2018) Polyamines and their metabolic engineering for plant salinity stress tolerance. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer International Publishing, Cham, pp 339–358

    CrossRef  Google Scholar 

  • Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M (2011) Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiol Plant 142:211–223. https://doi.org/10.1111/j.1399-3054.2011.01458.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Kumar A, Taylor MA, Arif SAM, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9:147–158. https://doi.org/10.1046/j.1365-313X.1996.09020147.x

    CAS  CrossRef  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    CrossRef  Google Scholar 

  • Kumar RR, Sharma SK, Rai GK, Singh K, Choudhury M, Gaurav D, Singh GP, Goswami S, Pathak H, Rai RD (2014) Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat (Triticum aestivum L.). Indian J Biochem Biophys 51(5):396–406

    CAS  PubMed  Google Scholar 

  • Kumar V, Wani SH, Suprasanna P, Tran L-SP (eds) (2018) Salinity responses and tolerance in plants. Volume 1, Targeting sensory, transport and signaling mechanisms. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-75671-4

    CrossRef  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamine metabolism, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    CAS  CrossRef  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:1–14. https://doi.org/10.3389/fchem.2018.00026

    CAS  CrossRef  Google Scholar 

  • Lesins K, Lesins I (1979) Genus Medicago (Leguminosae): a taxogenetic study. Junk Publishers, The Hague. https://doi.org/10.1007/978-94-009-9634-2

    CrossRef  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15(9):1186–1203. https://doi.org/10.1111/pbi.12708

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  CrossRef  Google Scholar 

  • Liu YH, Offler CE, Ruan YL (2013) Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front Plant Sci 4:282. https://doi.org/10.3389/fpls.2013.00282

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015a) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827. https://doi.org/10.3389/fpls.2015.00827

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu M, Chu M, Ding Y, Wang S, Liu Z, Tang S, Ding C, Li G (2015b) Exogenous spermidine alleviates oxidative damage and reduce yield loss in rice submerged at tillering stage. Front Plant Sci 6:919. https://doi.org/10.3389/fpls.2015.00919

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lu S, Zhuo C, Wang X, Guo Z (2014) Nitrate reductase (NR)-dependent NO production mediates ABA- and H2O2-induced antioxidant enzymes. Plant Physiol Biochem 74:9–15. https://doi.org/10.1016/J.PLAPHY.2013.10.030

    CAS  CrossRef  PubMed  Google Scholar 

  • Luo J, Liu M, Zhang C, Peipei Z, Jingjing C, Zhenfei G, Shaoyun L (2017) Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling. Front Plant Sci 8:1655. https://doi.org/10.3389/fpls.2017.01655

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Hausman JF, Quinet M, Lefèvre I (2013) Polyamines and their roles in the alleviation of ion toxicities in plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 315–353

    CrossRef  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466. https://doi.org/10.1146/annurev.pp.24.060173.002305

    CAS  CrossRef  Google Scholar 

  • Majumdar R, Barchi B, Turlapati AS, Gagne M, Minocha R, Long S, Minocha SC (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    CAS  CrossRef  Google Scholar 

  • Masgrau C, Altabella T, Farras R, Flores D, Thompson AJ, Besford RT, Tiburcio AF (1997) Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J 11:465–473. https://doi.org/10.1046/j.1365-313X.1997.11030465.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy based metabolite profiles of transgenic tomato fruit engineered to accumulate polyamines spermidine and spermine reveal enhanced anabolic nitrogen-carbon interactions. Plant Physiol 142(4):1759–1770

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mattoo AK, Fatima T, Upadhyay RK, Handa AK (2014) Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles. In: D’Mello JPF (ed) Polyamine biosynthesis in plants. CAB International, Wallingford, pp 177–194

    Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 20(6):613–618

    CAS  PubMed  CrossRef  Google Scholar 

  • Michaeli S, Fromm H (2015) Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front Plant Sci 6:419

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mohammadi H, Ghorbanpour M, Brestic M (2018) Exogenous putrescine changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crop Prod 122:119–132

    CAS  CrossRef  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Subhash C, Minocha SC (2009) Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture. Plant Physiol Biochem 47:262–271

    CAS  PubMed  CrossRef  Google Scholar 

  • Moschou PN, Paschalidis AKA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3(12):1061–1066

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nayyar H, Kaur S, Singh K, Kumar S, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sci 46:333–338

    CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pão. Plant Growth Regul 48:51–63

    CAS  CrossRef  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. https://doi.org/10.1093/aob/mcw191

    CrossRef  PubMed  Google Scholar 

  • Nunes C, Araújo SS, da Silva JM, Fevereiro MPS, da Silva AB (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296. https://doi.org/10.1016/j.envexpbot.2007.11.004

    CAS  CrossRef  Google Scholar 

  • Page AF, Minocha R, Minocha SC (2012) Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids 42(1):295–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23. https://doi.org/10.1016/J.PLANTSCI.2015.05.003

    CrossRef  PubMed  Google Scholar 

  • Pandey R, Gupta A, Chowdhary A, Pal RK, Rajam MV (2015) Over-expression of mouse ornithine decarboxylase gene under the control of fruit-specific promoter enhances fruit quality in tomato. Plant Mol Biol 87:249–260. https://doi.org/10.1007/s11103-014-0273-y

    CAS  CrossRef  PubMed  Google Scholar 

  • Pang C, Wang C, Chen H, Guo Z, Li C (2009) Transcript profiling of cold responsive genes in Medicago falcata. In: Yamada T, Spangenberg G (eds) Molecular breeding of forage and turf. Springer New York, New York, pp 141–150

    CrossRef  Google Scholar 

  • Patel J, Ariyaratne M, Ahmed S, Ge L, Phuntumart V, Kalinoski A, Morris PF (2017) Dual functioning of plant arginases provides a third route for putrescine synthesis. Plant Sci 262:62–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96. https://doi.org/10.4161/gmcr.28774

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol Biol 70:253–264. https://doi.org/10.1007/s11103-009-9470-5

    CAS  CrossRef  PubMed  Google Scholar 

  • Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N (2018) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol 25:53–65

    Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282. https://doi.org/10.5511/plantbiotechnology.24.273

    CAS  CrossRef  Google Scholar 

  • Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Mol Breed 9:137–147. https://doi.org/10.1023/A:1026765026493

    CAS  CrossRef  Google Scholar 

  • Purushothaman R, Krishnamurthy L, Upadhyaya HD, Vadez V, Varshney RK (2017) Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea. Funct Plant Biol 44:235–252. https://doi.org/10.1071/FP16154

    CrossRef  PubMed  Google Scholar 

  • Radhakrishnan R, Lee I (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    CAS  CrossRef  Google Scholar 

  • Rady MM, El-Yazal MAS, Taie HAA, Ahmed SMA (2016) Response of wheat growth and productivity to exogenous polyamines under lead stress. J Crop Sci Biotechnol 19:363–371. https://doi.org/10.1007/s12892-016-0041-4

    CrossRef  Google Scholar 

  • Romero FM, Maiale SJ, Rossi FR, Marina M, Ruíz OA, Gárriz A (2018) Polyamine metabolism responses to biotic and abiotic stress. In: Alcázar R, Tiburcio A (eds) Polyamines. Methods in molecular biology, vol 1694. Humana Press, New York, pp 37–49

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104. https://doi.org/10.1023/A:1015086831467

    CrossRef  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875. https://doi.org/10.1016/S0168-9452(01)00337-5

    CAS  CrossRef  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992. https://doi.org/10.1016/S0168-9452(02)00272-8

    CAS  CrossRef  Google Scholar 

  • Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Chapter 2: Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150. https://doi.org/10.1016/S0065-2296(08)00602-2

    CAS  CrossRef  Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21. https://doi.org/10.3389/fenvs.2015.00021

    CrossRef  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GF, Floh EIS (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryogenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90(1):93–101

    CAS  CrossRef  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2000) Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ 23:719–726. https://doi.org/10.1046/j.1365-3040.2000.00589.x

    CrossRef  Google Scholar 

  • Sato S, Peet MM, Gardner RG (2001) Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci Hortic (Amsterdam) 90:243–254. https://doi.org/10.1016/S0304-4238(00)00262-4

    CrossRef  Google Scholar 

  • Seifi HS, Shelp BJ (2019) Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front Plant Sci 10:117. https://doi.org/10.3389/fpls.2019.00117

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Serafini-Fracassini D, Del Duca S (2008) Transglutaminases: widespread crosslinking enzymes in plants. Ann Bot 102:145–152

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Scherer GFE, Handro W, Guerra MP, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171(1):91–98

    CAS  CrossRef  Google Scholar 

  • Sun P, Zhu X, Huang X, Liu J-H (2014) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79. https://doi.org/10.1016/j.plaphy.2014.02.022

    CAS  CrossRef  PubMed  Google Scholar 

  • Tajti J, Janda T, Majláth I, Szalai G, Pál M (2018) Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Saf 148:546–554

    CAS  PubMed  CrossRef  Google Scholar 

  • Talaat NB, Shawky BT, Ibrahim AS (2015) Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58

    CAS  CrossRef  Google Scholar 

  • Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37(4):864–885

    CAS  PubMed  CrossRef  Google Scholar 

  • Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu Rev Plant Biol 69:733–759. https://doi.org/10.1146/annurev-arplant-042817-040218

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiburcio AF, Alcázar R (2018) Potential applications of polyamines in agriculture and plant biotechnology. In: Alcázar R, Tiburcio A (eds) Polyamines: methods in molecular biology, volume 1694. Humana Press, New York

    Google Scholar 

  • Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100(3):664–674

    CAS  CrossRef  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47(3):346–354

    CAS  PubMed  CrossRef  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi K, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    CAS  CrossRef  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    CAS  PubMed  CrossRef  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    CAS  CrossRef  Google Scholar 

  • Wang W, Liu J-H (2016) CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Sci Rep 6:31384. https://doi.org/10.1038/srep31384

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wen X-P, Pang X-M, Matsuda N, Kita M, Inoue H, Hao Y-J, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263. https://doi.org/10.1007/s11248-007-9098-7

    CAS  CrossRef  PubMed  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478. https://doi.org/10.1016/J.ENVEXPBOT.2009.03.014

    CAS  CrossRef  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103. https://doi.org/10.1007/s11248-009-9296-6

    CAS  CrossRef  PubMed  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Kita M, Moriguchi T (2011) Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environ Exp Bot 72:157–166. https://doi.org/10.1016/J.ENVEXPBOT.2011.03.001

    CAS  CrossRef  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181(5):593–603

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu Y, Zhou H, Que Y-X, Chen R-K, Zhang M-Q (2008) Cloning and identification of promoter Prd29A and its application in sugarcane drought resistance. Sugar Tech 10:36–41. https://doi.org/10.1007/s12355-008-0006-0

    CAS  CrossRef  Google Scholar 

  • Wuddineh W, Minocha R, Minocha SC (2018) Polyamines in the context of metabolic networks. In: Alcázar R, Tiburcio AF (eds) Polyamines: methods and protocols. Humana Press, New York, pp 1–23

    Google Scholar 

  • Xu W, Cui K, Xu A, Nie L, Huang J, Peng S (2015) Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol Plant 37:9. https://doi.org/10.1007/s11738-014-1760-0

    CAS  CrossRef  Google Scholar 

  • Xu J, Wolters-Arts M, Mariani C, Huber H, Rieu I (2017) Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica 213:156. https://doi.org/10.1007/s10681-017-1949-6

    CrossRef  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527. https://doi.org/10.1051/agro/2009050

    CAS  CrossRef  Google Scholar 

  • Yadav JS, Rajam MV (1997) Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: efficient somatic embryogenesis with putrescine. J Exp Bot 48(8):1537–1545

    CAS  CrossRef  Google Scholar 

  • Yang W, Li Y, Yin Y, Qin Z, Zheng M, Chen J, Luo Y, Pang D, Jiang W, Li Y, Wang Z (2017) Involvement of ethylene and polyamines biosynthesis and abdominal phloem tissues characters of wheat caryopsis during grain filling under stress conditions. Sci Rep 7:46020. https://doi.org/10.1038/srep46020

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ye B, Muller HH, Zhang J, Gressel J (1998) Constitutively elevated levels of putrescine and putrescine generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol 115:1443–1451

    CrossRef  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    CAS  PubMed  CrossRef  Google Scholar 

  • Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA (2017) Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity. Front Plant Sci 8:855. https://doi.org/10.3389/fpls.2017.00855

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zeid IM, Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50(4):635–640

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Zhang H, Zou ZR, Liu Y, Hu XH (2015) Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato. Phytochemistry 110:13–21

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhuo C, Liang L, Zhao Y, Guo Z, Lu S (2018) A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ 41:2021–2032. https://doi.org/10.1111/pce.13114

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from FCT (Fundação para a Ciência e Tecnologia, Lisbon, Portugal) is acknowledged through the research unit “GREEN-it: Bioresources for Sustainability” (UID/Multi/04551/2013) and through ASD and SSA PhD holders DL57 research contracts. ALWS is supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and Young Investigators Grants 15/21075-4 and 17/01284-3. ALWS thanks Dra. Eny IS Floh (Department of Botany, University of São Paulo) for her valuable collaboration and pioneering studies with polyamines in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sofia Duque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

de Sousa Araújo, S., dos Santos, A.L.W., Duque, A.S. (2019). Engineering Polyamine Metabolic Pathways for Abiotic Stress Tolerance in Plants. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_14

Download citation