Skip to main content

The Role of Proline, Glycinebetaine, and Trehalose in Stress-Responsive Gene Expression

  • Chapter
  • First Online:
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants

Abstract

Plants have sophisticated stress-sensing and stress-coping mechanisms which enable them to survive and be productive under abiotic and biotic stress conditions. According to the type and severity of the stress, different adaptive and/or tolerance mechanisms are involved in defense processes. However, these processes may overlap or be active together in order to make it easier for plants to fight against different or combined stresses in their natural environment at the same time. Osmotic adjustment and protection of membrane integrity are the two important and mutual components of overall defense processes. The bioactive molecules, glycinebetaine, trehalose, and proline, have been reported to maintain both osmotic adjustment and membrane integrity either by exogenous treatments or by their increased biosynthesis. Glycinebetaine is a quaternary ammonium molecule which is well-known to be a compatible solute. Trehalose is a non-reducing disaccharide with water replacement and glass formation characteristics. The proteinogenic amino acid proline is also a compatible osmoprotectant molecule with a variety of stress-related functions. Although there is a vast amount of information available on the protective role of these molecules, their mode of action is still unclear. Differentiation in the expression of defense-related genes is usually found out to be correlated with the increased or decreased levels of these molecules. Here we collected and reviewed the latest information available on glycinebetaine, trehalose, and proline by means of their influence and impact on the transcription and regulation of the stress-responsive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Article  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P (2010) The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPS–TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol Biol Evol 27(2):359–369

    Article  PubMed  CAS  Google Scholar 

  • Bae H, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126

    Article  CAS  Google Scholar 

  • Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, Lagrimini LM (2017) The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC Plant Biol 17:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bor M, Ozdemir F (2018) Manipulating metabolic pathways for development of salt-tolerant crops. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer, Cham

    Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Castiglioni P, Bell E, Lund A, Rosenberg AF, Meghan GM, Hinchey BS, Bauer S, Nelson DE, Robert J, Bensen RJ (2018) Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct 2(2):1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang Y, Wang C, Lu W, Jin JB, Hua X (2011) Proline induces calcium-mediated oxidative burst and salicylic acid signaling. Amino Acids 40:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646

    Article  CAS  PubMed  Google Scholar 

  • Coelho CP, Huang P, Lee DY, Brutnell TP (2018) Making roots, shoots, and seeds: IDD gene family diversification in plants. Trends Plant Sci 23:66–78

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1990) A soybean gene encoding delta-1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia-coli and is foundtobeosmoregulated. Mol Gen Genet 221:299–305

    Article  CAS  PubMed  Google Scholar 

  • Dröge-Laser W, Weiste C (2018) The C/S1 bZIP network: a regulatory hub orchestrating plant energy homeostasis. Trends Plant Sci 23:422–433

    Article  PubMed  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P (2007) Membrane trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • El-Bashiti T, Hamamcı H, Oktem H, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN (2015) Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev 90:1065–1099

    Article  PubMed  Google Scholar 

  • Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, Höhne M, Encke B, Plaxton WC, Zeeman SC, Li Z, Schulze WX, Hoefgen R, Stitt M, Lunn JE (2016) Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J 85:410–423

    Article  CAS  PubMed  Google Scholar 

  • Funck D et al (2008) Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenyalanine ammonia-lyase activities in Jatropha curcas L seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  • Garapati P, Feil R, Lunn JE, Van Dijck P, Balazadeh S, Mueller-Roeber B (2015) Transcription factor Arabidopsis activating factor1 integrates carbon starvation responses with trehalose metabolism. Plant Physiol 169:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savoure A (2012) Phospholipases C and D modulate Proline accumulation in Thellungiellahalophila/salsuginea differently according to the severity of salt or hyperosmotic stress. Plant Cell Physiol 53(1):183–192

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2007) The role of trehalose biosynthesis in plants. Plant Physiol 144:3–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Tian Z, Yan D, Zhang J, Qin P (2009) Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J 6:67–75

    CAS  Google Scholar 

  • Garcia AB, Engler JA, Iyer S, Gerats T, Montagu MV, Caplan AB (1997) Effects of Osmoprotectants upon NaCl stress in rice. Plant Physiol 115(1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare P, Cress W, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Houtte H, Vandesteene L, Lopes-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Overexpression of the trehalose gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in absisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh SM, Noh EK, Kim HG, Jeon BW, Bae K, Hu HC, Kwak JM, Park OK (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interactwith each other and regulate drought and salt stress responses. Plant Cell Physiol 51:1499–1514

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Huang X-S, Li K-Q, Yin H, Li L-T, Yao Z-H (2016) Overexpression of a bHLH1 transcription factor of Pyrus ussuriensis confers enhanced cold tolerance and increases expression of stress-responsive genes. Front Plant Sci 7:441

    PubMed  PubMed Central  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    Article  CAS  PubMed  Google Scholar 

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant 58:265

    Article  CAS  Google Scholar 

  • Kim GB, Nam YW (2013) A novel 1-pyrroline-5-carboxylate synthetase gene of Medicagotruncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Kondrák M, Marincs F, Antal F, Juhász Z, Bánfalvi Z (2012) Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol 12:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Ismail AM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234(5):1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    Article  CAS  Google Scholar 

  • Liang W, Xiaoli M, Peng W, Lianyin L (2017) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Comm 495(1):286–291

    Article  CAS  PubMed  Google Scholar 

  • Liu JP, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z et al (2015) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R, Osuna D (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34(6):550–563

    Google Scholar 

  • Li J, Guo X, Zhang M, Wang X, Zhao Y, Yin Z, Zhang Z, Wang Y, Xiong H, Zhang H, Todorovska E, Li Z (2018) OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Sci 270:131–139

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M (2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85

    Article  CAS  PubMed  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169(6):596–604

    Article  CAS  Google Scholar 

  • Nuccio ML, Russel BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496

    Article  CAS  PubMed  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou H, Meghji M, Primavesi LF, Basu SS (2015) Expression of trehalose-6-phosphate in maize ears improves yield in well-watered and drought conditions. Nat Biotech 33:862–869

    Article  CAS  Google Scholar 

  • Pampurova S, Van Dijck P (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290

    Article  CAS  PubMed  Google Scholar 

  • Phillips K, Majola A, Gokul A, Keyster M, Ludidi N, Egbichi I (2018) Inhibition of NOS- like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine betaine biosynthesis. Sci Rep 8(1):12628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai VK, Sharma UD (1991) Amino acids can modulate ABA induced stomatal closure, stomatal resistance and K+ fluxes in Vicia faba leaves. Beitr Biol Pflanzenphysiol 66:393–405

    Google Scholar 

  • Rana U, Rai VK (1996) Modulation of calcium uptake by exogenous amino acids in Phaseolus vulgaris seedlings. Acta Physiol Plant 18:117–120

    CAS  Google Scholar 

  • Rajendrakumar CSV, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Letters 410 (2-3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata A (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi- Shinozaki K. (2004) A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol 45:309–317

    Article  CAS  PubMed  Google Scholar 

  • Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6849–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Verslues PE (2010) Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ 33:1838–1851

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    CAS  PubMed  Google Scholar 

  • Su M, Li XF, Ma XY, Peng XJ, Zhao AG, Cheng LQ, Chen SY, Liu GS (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tsai AY, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 63:515–523

    Article  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, American Society of Plant Biologists. USA 8:e0140

    Article  Google Scholar 

  • Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X (2017) Arabidopsis amino acid Permease1 contributes to salt stress-induced proline uptake from exegenous sources. Front Plant Sci 8:2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei DD, Zhang W, Wang CC, Meng QW, Li G, Chen THH, Yang XH (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  CAS  PubMed  Google Scholar 

  • Williamson CL, Slocum RD (1992) Molecular cloning and evidence for osmoregulation of the delta 1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisumsativum L.). Plant Physiol 100:1464–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K et al (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dong C, Li X, Du J, Qian M, Sun X, Yang Y (2016) A novel Ap2/ERF transcription factor from Stipapurpurea leads to enhanced drought tolerance in Arabidopsis thaliana. Plant Cell Rep 35:2227

    Article  CAS  PubMed  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Zhai Z, Keereetaweep J, Liu H, Feil R, Lunn JE, Shanklin J (2018) Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell 30:2616–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CS, Lu Q, Verma DP (1995) Removal of feedback inhibition of delta 1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8:e83011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Liang J, Wang M, Li D, Liu Y, Chen THH, Yang X (2019) Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Plant Sci 280:355–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Bor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahraman, M., Sevim, G., Bor, M. (2019). The Role of Proline, Glycinebetaine, and Trehalose in Stress-Responsive Gene Expression. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_11

Download citation

Publish with us

Policies and ethics