Abstract
In this chapter we provide some simple ways to approximate the Riemann–Stieltjes integral of a product of two functions \(\int _{a}^{b}f\left ( t\right ) g\left ( t\right ) dv\left ( t\right )\) by the use of simpler quantities and under several assumptions for the functions involved, one of them satisfying the boundedness condition
where \(f:\left [ a,b\right ] \rightarrow \mathbb {C}\). Applications for continuous functions of selfadjoint operators and functions of unitary operators on Hilbert spaces are also given.
1991 Mathematics Subject Classification
- 26D15
- 26D10
- 26D07
- 26A33
This is a preview of subscription content, access via your institution.
Buying options
References
T.M. Apostol, Mathematical Analysis, 2nd edn. (Addison-Wesley, Boston, 1981)
N.S. Barnett, W.S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators. Comput. Math. Appl. 57(2), 195–201 (2009). Preprint RGMIA Res. Rep. Coll. 9(2006), No. 4, Article 9
P. Cerone, S.S. Dragomir, Trapezoid type rules from an inequalities point of view, in Handbook of Analytic Computational Methods in Applied Mathematics, ed. by G. Anastassiou (CRC Press, New York, 2000), pp. 65–134
P. Cerone, S.S. Dragomir, A refinement of the Grüss inequality and applications. Tamkang J. Math. 38(1), 37–49 (2007). Preprint RGMIA Res. Rep. Coll.,5(2) (2002), Article 14
P. Cerone, S.S. Dragomir, C.E.M. Pearce, A generalised trapezoid inequality for functions of bounded variation. Turk. J. Math. 24(2), 147–163 (2000)
P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation. Comput. Math. Appl. 54(2), 183–191 (2007). Preprint RGMIA Res. Rep. Coll.9(2006), No. 2, Article 14. http://rgmia.vu.edu.au/v9n2.html
X.L. Cheng, J. Sun, A note on the perturbed trapezoid inequality. J. Inequal. Pure Appl. Math. 3(2) (2002), Art. 29
W.S. Cheung, S.S. Dragomir, Two Ostrowski type inequalities for the Stieltjes integral of monotonic functions. Bull. Aust. Math. Soc. 75(2), 299–311 (2007). Preprint RGMIA Res. Rep. Coll.9(2006), No. 3, Article 8.
W.S. Cheung, S.S. Dragomir, A survey on Ostrowski type inequalities for Riemann-Stieltjes integral, in Handbook of Functional Equations. Springer Optimization and Applications, vol. 95 (Springer, New York, 2014), pp. 75–104
S.S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Aust. Math. Soc. 60(3), 495–508 (1999)
S.S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications. J. KSIAM 3(1), 127–135 (1999)
S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38, 33–37 (1999)
S.S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral. Korean J. Appl. Math. 7, 477–485 (2000)
S.S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Inequal. Appl. 4(1), 59–66 (2001). Preprint: RGMIA Res. Rep. Coll.2 (1999), Art. 7.
S.S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral \(\int _{a}^{b}f\left ( t\right ) du\left ( t\right ) \) where f is of Hölder type and u is of bounded variation and applications. J. KSIAM 5(1), 35–45 (2001)
S.S. Dragomir, The median principle for inequalities and applications, in Functional Equations, Inequalities and Applications (Kluwer Academic Publishers, Dordrecht, 2003), pp. 21–37
S.S. Dragomir, A companion of the Grüss inequality and applications. Appl. Math. Lett. 17(4), 429–435 (2004)
S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral. Kragujevac J. Math. 26, 89–122 (2004)
S.S. Dragomir, A generalisation of Cerone’s identity and applications. Tamsui Oxf. J. Math. Sci. 23(1), 79–90 (2007). Preprint RGMIA Res. Rep. Coll.8(2005), No. 2. Article 19
S.S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications. Appl. Math. Lett. 20, 123–130 (2007)
S.S. Dragomir, The perturbed median principle for integral inequalities with applications, in Nonlinear Analysis and Variational Problems. Springer Optimization and Applications, vol. 35 (Springer, New York, 2010), pp. 53–63
S.S. Dragomir, Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces. Acta Math. Vietnam. 39, 287–303 (2014). https://doi.org/10.1007/s40306-014-0061-4. Preprint RGMIA Res. Rep. Coll.15(2012), Art. 16
S.S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14(1), 283 (2017). Art. 1
S.S. Dragomir, I. Fedotov, An inequality of Grüss type for the Riemann-Stieltjes integral and applications for special means. Tamkang J. Math. 29(4), 287–292 (1998)
S.S. Dragomir, I. Fedotov, A Grüss type inequality for mappings of bounded variation and applications for numerical analysis. Nonlinear Funct. Anal. Appl. 6(3), 425–433 (2001)
S.S. Dragomir, C. Buşe, M.V. Boldea, L. Braescu, A generalisation of the trapezoidal rule for the Riemann-Stieltjes integral and applications. Nonlinear Anal. Forum (Korea) 6(2), 337–351 (2001)
G. Helmberg, Introduction to Spectral Theory in Hilbert Space (Wiley, New York, 1969)
Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral. Soochow J. Math. 30(4), 483–489 (2004)
A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert. Comment. Math. Helv. 10, 226–227 (1938)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Dragomir, S.S. (2019). Some Weighted Inequalities for Riemann–Stieltjes Integral When a Function Is Bounded. In: Andrica, D., Rassias, T. (eds) Differential and Integral Inequalities. Springer Optimization and Its Applications, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-030-27407-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-27407-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27406-1
Online ISBN: 978-3-030-27407-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)