Skip to main content

Functional Assessment of Vision Restoration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Despite the many promising therapeutic approaches identified in the laboratory, it has proven extremely challenging to translate basic science advances into the eye clinic. There are many recent examples of clinical trials (e.g., Holz FG, Sadda SR, Busbee B, JAMA Ophthalmology 136:666-677, 2018) failing at the most expensive phase three stage, unable to demonstrate efficacy in the patient population. As a community we must think carefully about how we select what goes into that pipeline. Translating vision restoration therapies from the bench to the bedside involves selecting the most appropriate animal models of retinal degeneration and then moving beyond morphology to deploy appropriate functional tests in vitro, in vivo, and in the clinic. In this review we summarize the functional assays available to researchers, future prospects, and highlight areas in need of further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acland GM, Aguirre GD, Ray J et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92

    CAS  PubMed  Google Scholar 

  • Adeyemo O, Jeter PE, Rozanski C et al (2017) Living with ultra-low vision: an inventory of self-reported visually guided activities by individuals with profound visual impairment. Transl Vis Sci Technol 6:10–10

    Article  Google Scholar 

  • Beltran WA, Cideciyan AV, Guziewicz KE et al (2014) Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations. PLoS One 9:e90390

    Article  Google Scholar 

  • Ben M’Barek K, Habeler W, Plancheron A et al (2017) Human ESC–derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med:9

    Google Scholar 

  • Berry MH, Holt A, Levitz J et al (2017) Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nat Commun 8:1862

    Article  Google Scholar 

  • Bi A, Cui J, Ma Y-P et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  CAS  Google Scholar 

  • Caporale N, Kolstad KD, Lee T et al (2011) LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 19:1212–1219

    Article  CAS  Google Scholar 

  • Chaffiol A, Caplette R, Jaillard C et al (2017) A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 25:2546–2560

    Article  CAS  Google Scholar 

  • Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295

    Article  CAS  Google Scholar 

  • Cheong SK, Strazzeri JM, Williams DR et al (2018) All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS One 13:e0194947

    Article  Google Scholar 

  • Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  CAS  Google Scholar 

  • Dalkara D, Sahel J-A (2014) Gene therapy for inherited retinal degenerations. C R Biol 337:185–192

    Article  Google Scholar 

  • Dowling J (2008) Current and future prospects for optoelectronic retinal prostheses. Eye 23:1999

    Article  Google Scholar 

  • Gaub BM, Berry MH, Visel M et al (2018) Optogenetic retinal gene therapy with the light gated GPCR vertebrate rhodopsin. Methods Mol Biol (Clifton, NJ) 1715:177–189

    Article  CAS  Google Scholar 

  • Hardcastle AJ, Sieving PA, Sahel J-A et al (2018) Translational retinal research and therapies. Transl Vis Sci Technol 7:8

    Article  Google Scholar 

  • Holz FG, Sadda SR, Busbee B et al (2018) Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 136:666–677

    Article  Google Scholar 

  • Hood DC, Frishman LJ, Saszik S et al (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  • Hood DC, Odel JG, Chen CS et al (2003) The multifocal electroretinogram. J Neuroophthalmol 23:225–235

    Article  Google Scholar 

  • Jacobson SG, Cideciyan AV, Sumaroka A et al (2017) Defining outcomes for clinical trials of leber congenital amaurosis caused by GUCY2D mutations. Am J Ophthalmol 177:44–57

    Article  Google Scholar 

  • Kashani AH, Lebkowski JS, Rahhal FM et al (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 10

    Google Scholar 

  • Klistorner AI, Graham SL, Grigg JR, Billson FA (1998) Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 39(6):937–950

    Google Scholar 

  • Kurokawa K, Crowell JA, Zhang F et al (2018) Imaging retinal function with phase-sensitive adaptive optics optical coherence tomography. Invest Ophthalmol Vis Sci 59:728–728

    Google Scholar 

  • Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667

    Article  CAS  Google Scholar 

  • Lorach H, Goetz G, Mandel Y et al (2015) Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vis Res 111:142–148

    Article  Google Scholar 

  • Lu Q, Ganjawala TH, Hattar S et al (2018) A robust optomotor assay for assessing the efficacy of optogenetic tools for vision restoration. Invest Ophthalmol Vis Sci 59:1288–1294

    Article  CAS  Google Scholar 

  • McGregor JE, Godat T, Parkins K et al (2018) Channelrhodopsin mediated retinal ganglion cell responses in the living macaque. Invest Ophthalmol Vis Sci 59:2589–2589

    Google Scholar 

  • Norcia AM, Appelbaum LG, Ales JM et al (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15:4

    Article  Google Scholar 

  • Pan Z-H, Lu Q, Bi A et al (2015) Optogenetic approaches to restoring vision. Ann Rev Vis Sci 1:185–210

    Article  Google Scholar 

  • Pfäffle C, Hillmann D, Spahr H et al (2018) Physiologic origin of intrinsic optical signals in human retina. Invest Ophthalmol Vis Sci 59:672–672

    Google Scholar 

  • Rising A, Khristov V, Li Y et al (2018) Efficacy of clinical-grade iPSC-RPE cells and patch in rodent and swine models of retinal degeneration. Invest Ophthalmol Vis Sci 59:546–546

    Google Scholar 

  • Russell S, Bennett J, Wellman JA et al (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:849–860

    Article  CAS  Google Scholar 

  • Seiple W, Holopigian K, Clemens C et al (2005) The multifocal visual evoked potential: an objective measure of visual fields? Vis Res 45:1155–1163

    Article  Google Scholar 

  • Sengupta A, Chaffiol A, Macé E et al (2016) Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med 8:1248–1264

    Article  CAS  Google Scholar 

  • Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vis Res 41:1241–1255

    Article  CAS  Google Scholar 

  • Tochitsky I, Trautman J, Gallerani N et al (2017) Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci Rep 7:45487

    Article  CAS  Google Scholar 

  • Walsh T (2010) Visual fields: examination and interpretation. Oxford University Press, New York, USA

    Google Scholar 

  • Williams DR (2011) Imaging single cells in the living retina. Vis Res 51:1379–1396

    Article  Google Scholar 

  • Yin L, Masella B, Dalkara D et al (2014) Imaging light responses of foveal ganglion cells in the living macaque eye. J Neurosci 34:6596–6605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette E. McGregor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGregor, J.E., Williams, D.R., Merigan, W.H. (2019). Functional Assessment of Vision Restoration. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_24

Download citation

Publish with us

Policies and ethics