Skip to main content

A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

The ability to temporally control levels of a therapeutic protein in vivo is vital for the development of safe and efficacious gene therapy treatments for autosomal dominant or complex retinal diseases, where uncontrolled transgene overexpression may lead to deleterious off-target effects and accelerated disease progression. While numerous platforms exist that allow for modulation of gene expression levels – ranging from inducible promoters to destabilizing domains – many have drawbacks that make them less than ideal for use in recombinant adeno-associated virus (rAAV) vectors, which over the past two decades have become the mainstay technology for mediating gene delivery to the retina. Herein, we discuss the advantages and disadvantages of three major gene expression platforms with regard to their suitability for ocular gene therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banaszynski LA, Chen LC, Maynard-Smith LA et al (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126:995–1004

    Article  CAS  Google Scholar 

  • Boye SE, Boye SL, Lewin AS et al (2013) A comprehensive review of retinal gene therapy. Mol Ther 21:509–519

    Article  CAS  Google Scholar 

  • Chang AL, Wolf JJ, Smolke CD (2012) Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr Opin Biotechnol 23:679–688

    Article  CAS  Google Scholar 

  • Chenuaud P, Larcher T, Rabinowitz JE et al (2004) Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 9:410–418

    Article  CAS  Google Scholar 

  • Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176

    Article  Google Scholar 

  • Datta S, Renwick M, Chau VQ et al (2018) A destabilizing domain allows for fast, noninvasive, conditional control of protein abundance in the mouse eye - implications for ocular gene therapy. Invest Ophthalmol Vis Sci 59:4909–4920

    Article  CAS  Google Scholar 

  • de Leeuw CN, Korecki AJ, Berry GE et al (2016) rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol Brain 9:52

    Article  Google Scholar 

  • Georgievska B, Jakobsson J, Persson E et al (2004) Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 15:934–944

    Article  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  Google Scholar 

  • Han Y, Chang QA, Virag T et al (2010) Lack of humoral immune response to the tetracycline (Tet) activator in rats injected intracranially with Tet-off rAAV vectors. Gene Ther 17:616–625

    Article  CAS  Google Scholar 

  • Iwamoto M, Bjorklund T, Lundberg C et al (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988

    Article  CAS  Google Scholar 

  • Kay CN, Ryals RC, Aslanidi GV et al (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 8:e62097

    Article  CAS  Google Scholar 

  • Latta-Mahieu M, Rolland M, Caillet C et al (2002) Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther 13:1611–1620

    Article  CAS  Google Scholar 

  • Le Guiner C, Stieger K, Toromanoff A et al (2014) Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates. PLoS One 9:e102538

    Article  Google Scholar 

  • Lipinski DM, Thake M, MacLaren RE (2013) Clinical applications of retinal gene therapy. Prog Retin Eye Res 32:22–47

    Article  CAS  Google Scholar 

  • McGee Sanftner LH, Rendahl KG, Quiroz D et al (2001) Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 3:688–696

    Article  CAS  Google Scholar 

  • Reid CA, Ertel KJ, Lipinski DM (2017) Improvement of photoreceptor targeting via intravitreal delivery in mouse and human retina using combinatory rAAV2 capsid mutant vectors. Invest Ophthalmol Vis Sci 58:6429–6439

    Article  CAS  Google Scholar 

  • Reid CA, Nettesheim ER, Connor TB et al (2018) Development of an inducible anti-VEGF rAAV gene therapy strategy for the treatment of wet AMD. Sci Rep 8:11763

    Article  Google Scholar 

  • Ruscito A, DeRosa MC (2016) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4:14

    Article  Google Scholar 

  • Sherwood AV, Henkin TM (2016) Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annu Rev Microbiol 70:361–374

    Article  CAS  Google Scholar 

  • Shockett P, Difilippantonio M, Hellman N et al (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci U S A 92:6522–6526

    Article  CAS  Google Scholar 

  • Strobel B, Klauser B, Hartig JS et al (2015) Riboswitch-mediated attenuation of transgene cytotoxicity increases adeno-associated virus vector yields in HEK-293 cells. Mol Ther 23:1582–1591

    Article  CAS  Google Scholar 

  • Vu KT, Zhang F, Hulleman JD (2017) Conditional, genetically encoded, small molecule-regulated inhibition of NFkappaB signaling in RPE cells. Invest Ophthalmol Vis Sci 58:4126–4137

    Article  CAS  Google Scholar 

  • Wissmann A, Meier I, Wray LV Jr et al (1986) Tn10 tet operator mutations affecting Tet repressor recognition. Nucleic Acids Res 14:4253–4266

    Article  CAS  Google Scholar 

  • Xue K, Groppe M, Salvetti AP et al (2017) Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye (Lond) 31:1308–1316

    Article  CAS  Google Scholar 

  • Zhang XH, Tee LY, Wang XG et al (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    Article  CAS  Google Scholar 

  • Zhong G, Wang H, Bailey CC et al (2016) Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. elife 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Lipinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipinski, D.M. (2019). A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_13

Download citation

Publish with us

Policies and ethics