Skip to main content

Surrogates for Disease Status: Contrast Enhancement Including Limitations of Pseudoprogression and Pseudoresponse

  • Chapter
  • First Online:

Abstract

The disease status of gliomas with or without therapy is noninvasively assessed by clinical presentation and magnetic resonance imaging (MRI). But there is overwhelming evidence that noninvasive methods are insufficient, mainly due to the infiltrative nature and heterogeneity of glioma and, most importantly, of these tumors under/after therapy. The heterogeneity of gliomas is enhanced by any treatment, since sensitivity to tumor therapy might differ between tumor regions. Prime examples are “pseudoprogression,” which occurs under cytotoxic therapy, and “pseudoresponse,” which means the lack of contrast enhancement of tumor progression under antiangiogenic treatment. Hence, it becomes obvious that conventional MR imaging alone is not the adequate surrogate for disease status in gliomas. This chapter focuses on MR features and methods that depict tumor status. First, we describe the MR features of tumor infiltration and blood-brain barrier (BBB) damage as basic markers of disease status, then we discuss their validity as surrogates for therapy response, and we end this chapter with an exemplary, not all-comprehensive presentation of new MR methods and an outlook for the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology. 2012;264:834–43.

    Article  PubMed  Google Scholar 

  2. Balaña C, Capellades J, Pineda E, Estival A, Puig J, Domenech S, Verger E, Pujol T, Martinez-García M, Oleaga L, et al. Pseudoprogression as an adverse event of glioblastoma therapy. Cancer Med. 2017;6:2858–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Blasel S, Franz K, Ackermann H, Weidauer S, Zanella F, Hattingen E. Stripe-like increase of rCBV beyond the visible border of glioblastomas: site of tumor infiltration growing after neurosurgery. J Neuro-Oncol. 2011;103:575–84.

    Article  Google Scholar 

  4. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol. 2006;27:859–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–7.

    Article  PubMed  Google Scholar 

  6. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–61.

    Article  PubMed  Google Scholar 

  7. Brynolfsson P, Nilsson D, Torheim T, Asklund T, Karlsson CT, Trygg J, Nyholm T, Garpebring A. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci Rep. 2017;7:4041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cha J, Kim ST, Kim H-J, Kim B-J, Kim YK, Lee JY, Jeon P, Kim KH, Kong D-S, Nam D-H. Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol. 2014;35:1309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen X, Wei X, Zhang Z, Yang R, Zhu Y, Jiang X. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI. Clin Imaging. 2015;39:775–80.

    Article  PubMed  Google Scholar 

  10. Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging (JMRI). 2010;31:538–48.

    Article  Google Scholar 

  11. Gaudino S, Quaglio F, Schiarelli C, Martucci M, Tartaglione T, Gualano MR, Di Lella GM, Colosimo C. Spontaneous modifications of contrast enhancement in childhood non-cerebellar pilocytic astrocytomas. Neuroradiology. 2012;54:989–95.

    Article  PubMed  Google Scholar 

  12. Grech-Sollars M, Hales PW, Miyazaki K, Raschke F, Rodriguez D, Wilson M, Gill SK, Banks T, Saunders DE, Clayden JD, et al. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed. 2015;28:468–85.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21.

    Article  Google Scholar 

  14. Hattingen E, Jurcoane A, Bähr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro-Oncol. 2011;13:1349–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hattingen E, Jurcoane A, Daneshvar K, Pilatus U, Mittelbronn M, Steinbach JP, Bähr O. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival. NeuroOncol. 2013;15:1395–404.

    CAS  Google Scholar 

  16. Hattingen E, Müeller A, Jurcoane A, Mädler B, Ditter P, Schild H, Herrlinger U, Glas M, Kebir S. Value of quantitative magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget. 2017;8:53542–51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herminghaus S, Pilatus U, Möller-Hartmann W, Raab P, Lanfermann H, Schlote W, Zanella FE. Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed. 2002;15:385–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hofer H. Zur Morphologie der circumventriculären Organe des Zwischenhirns der Säugetiere. Verhandlungen Dtsch Zool Ges. 1958;55:202–51.

    Google Scholar 

  19. Hopewell JW, Calvo W, Jaenke R, Reinhold HS, Robbins ME, Whitehouse EM. Microvasculature and radiation damage. Recent Results Cancer Res. 1993;130:1–16.

    Article  CAS  PubMed  Google Scholar 

  20. Hu LS, Baxter LC, Pinnaduwage DS, Paine TL, Karis JP, Feuerstein BG, Schmainda KM, Dueck AC, Debbins J, Smith KA, et al. Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in Posttreatment Gliomas. Am J Neuroradiol. 2010;31:40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jang BS, Jeon SH, Kim IH, Kim IA. Prediction of Pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci Rep. 2018;21(8):12516.

    Article  CAS  Google Scholar 

  22. Jurcoane A, Wagner M, Schmidt C, Mayer C, Gracien RM, Hirschmann M, Deichmann R, Volz S, Ziemann U, Hattingen E. Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis. J Magn Reson Imaging. 2013;38:1454–61.

    Article  PubMed  Google Scholar 

  23. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.

    Article  PubMed  Google Scholar 

  24. Kinoshita Y, Yokota A. Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 1997;10:2–12.

    Article  CAS  PubMed  Google Scholar 

  25. Kluge A, Lukas M, Toth V, Pyka T, Zimmer C, Preibisch C. Analysis of three leakage-correction methods for DSC-based measurement of relative cerebral blood volume with respect to heterogeneity in human gliomas. Magn Reson Imaging. 2016;34:410–21.

    Article  PubMed  Google Scholar 

  26. Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leitzen C, Schild HH, Bungart B, Herrlinger U, Lütter C, Müdder T, Wilhelm-Buchstab T, Schüller H. Prediction of clinical course of glioblastomas by MRI during radiotherapy. Strahlenther Onkol. 2010;186:681–6.

    Article  PubMed  Google Scholar 

  28. Leitzen C, Wilhelm-Buchstab T, Schmeel LC, Garbe S, Greschus S, Müdder T, Oberste-Beulmann S, Simon B, Schild HH, Schüller H. MRI during radiotherapy of glioblastoma: does MRI allow for prognostic stratification? Strahlenther Onkol. 2016;192:481–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lescher S, Jurcoane A, Veit A, Bähr O, Deichmann R, Hattingen E. Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI. Neuroradiology. 2015;57:11–20.

    Article  PubMed  Google Scholar 

  30. Li H, Li J, Cheng G, Zhang J, Li X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg. 2016;151:31–6.

    Article  PubMed  Google Scholar 

  31. Li-Chun Hsieh K, Chen CY, Lo CM. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput Biol Med. 2017;83:102–8.

    Article  PubMed  Google Scholar 

  32. Mangla R, Singh G, Ziegelitz D, Milano MT, Korones DN, Zhong J, Ekholm SE. Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology. 2010;256:575–84.

    Article  PubMed  Google Scholar 

  33. Matsumura A, Isobe T, Anno I, Takano S, Kawamura H. Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MR spectroscopy study. J Clin Neurosci. 2005;12:416–20.

    Article  CAS  PubMed  Google Scholar 

  34. Müller A, Jurcoane A, Kebir S, Ditter P, Schrader F, Herrlinger U, Tzaridis T, Mädler B, Schild HH, Glas M, et al. Quantitative T1-mapping detects cloudy-enhancing tumor compartments predicting outcome of patients with glioblastoma. Cancer Med. 2017;6:89–99.

    Article  PubMed  CAS  Google Scholar 

  35. Oh BC, Pagnini PG, Wang MY, Liu CY, Kim PE, Yu C, Apuzzo MLJ. Stereotactic radiosurgery: adjacent tissue injury and response after high-dose single fraction radiation: Part I–histology, imaging, and molecular events. Neurosurgery. 2007;60:31–44.. discussion 44–5.

    Article  PubMed  Google Scholar 

  36. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pope WB. Intraoperative mass spectrometry of tumor metabolites. Proc Natl Acad Sci. 2014;111:10906–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol. 2015;36:877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rieger J, Bähr O, Ronellenfitsch MW, Steinbach J, Hattingen E, Ba O. Bevacizumab-induced diffusion restriction in patients with glioma: tumor progression or surrogate marker of hypoxia? J Clin Oncol. 2010;28:2029.

    Article  Google Scholar 

  40. Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-Kragten AT, Sillevis Smitt PAE, van Es CA, van den Bent MJ. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer. 2008;113:405–10.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, Shi W, Zhang Z, Young RJ. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125:183–90.

    Article  Google Scholar 

  42. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP, Gupta A, Singh G, Hatanpaa KJ, Sloan A, et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: afeasibility study. AJNR Am J Neuroradiol. 2016;37:2231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsien C, Galbán CJ, Chenevert TL, Johnson TD, Hamstra DA, Sundgren PC, Junck L, Meyer CR, Rehemtulla A, Lawrence T, et al. Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade Glioma. J Clin Oncol. 2010;28:2293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uematsu H, Maeda M. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol. 2006;16:180–6.

    Article  PubMed  Google Scholar 

  45. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  46. Yang Y, Yan LF, Zhang X, Han Y, Nan HY, Hu YC, Hu B, Yan SL, Zhang J, Cheng DL, Ge XW, Cui GB, Zhao D, Wang W. Glioma grading on conventional MR images: adeep learning study with transfer learning. Front Neurosci. 2018;12:804.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, Hoffmann C, Nass D, Talianski A, Spiegelmann R, et al. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. NeuroOncol. 2015;17:457–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Hattingen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hattingen, E. (2020). Surrogates for Disease Status: Contrast Enhancement Including Limitations of Pseudoprogression and Pseudoresponse. In: Pope, W. (eds) Glioma Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-27359-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27359-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27358-3

  • Online ISBN: 978-3-030-27359-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics