Skip to main content

Tchebycheffian B-Splines Revisited: An Introductory Exposition

  • Chapter
  • First Online:
Advanced Methods for Geometric Modeling and Numerical Simulation

Part of the book series: Springer INdAM Series ((SINDAMS,volume 35))

Abstract

Tchebycheffian splines are smooth piecewise functions where the different pieces are drawn from extended Tchebycheff spaces. They are a natural generalization of polynomial splines and can be represented in terms of an interesting set of basis functions, the so-called Tchebycheffian B-splines, which generalize the standard polynomial B-splines. We provide an accessible and self-contained exposition of Tchebycheffian B-splines and their main properties. Our construction is based on an integral recurrence relation and allows for the use of different extended Tchebycheff spaces on different intervals. The special class of generalized B-splines is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The space \({\mathbb {T}}_{p}(I)\) is called a Tchebycheff (T-) space if any solution of (1) with \(m_0=\cdots =m_p=1\) is unique in \({\mathbb {T}}_{p}(I)\). In such a case, (1) is a Lagrange interpolation problem.

  2. 2.

    Our Tchebycheffian B-spline construction follows the approach of [3, 4], while it differs from [26] in two ways: the indexing of the weight functions and the positioning of the weight functions with respect to the integration. This provides a more intuitive notation.

  3. 3.

    The term “generalized splines” has several different meanings in the literature. For example, the splines considered here are much less general than those described in [30, Chap. 11]. We follow the definition given in [17]. This definition was already used before for special choices of U and V; see, for example, [15, 16].

References

  1. Barry, P.J.: de Boor-Fix dual functionals for Tchebycheffian B-spline curves. Constr. Approx. 12, 385–408 (1996)

    Article  MathSciNet  Google Scholar 

  2. Beccari, C.V., Casciola, G., Mazure, M.L.: Design or not design? A numerical characterisation for piecewise Chebyshevian splines. Numer. Algor. 81, 1–31 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bister, D.: Ein neuer Zugang für eine verallgemeinerte Klasse von Tschebyscheff-Splines. Ph.D. thesis, University of Karlsruhe (1996)

    Google Scholar 

  4. Bister, D., Prautzsch, H.: A new approach to Tchebycheffian B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 387–394. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  5. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: Generalized spline spaces over T-meshes: dimension formula and locally refined generalized B-splines. Appl. Math. Comput. 272, 187–198 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: On the dimension of Tchebycheffian spline spaces over planar T-meshes. Comput. Aided Geom. Design 45, 151–173 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bracco, C., Lyche, T., Manni, C., Speleers, H.: Tchebycheffian spline spaces over planar T-meshes: dimension bounds and dimension instabilities. J. Comput. Appl. Math. 349, 265–278 (2019)

    Article  MathSciNet  Google Scholar 

  8. Buchwald, B., Mühlbach, G.: Construction of B-splines for generalized spline spaces generated from local ECT-systems. J. Comput. Appl. Math. 159, 249–267 (2003)

    Article  MathSciNet  Google Scholar 

  9. Carnicer, J.M., Mainar, E., Peña, J.M.: On the critical lengths of cycloidal spaces. Constr. Approx. 39, 573–583 (2014)

    Article  MathSciNet  Google Scholar 

  10. Coppel, W.A.: Disconjugacy. Springer, Berlin (1971)

    Book  Google Scholar 

  11. Dyn, N., Ron, A.: Recurrence relation for Tchebycheffian B-splines. J. Anal. Math. 51, 118–138 (1988)

    Article  MathSciNet  Google Scholar 

  12. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)

    Google Scholar 

  13. Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

    Google Scholar 

  14. Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience Publishers, New York (1966)

    Google Scholar 

  15. Koch, P.E., Lyche, T.: Exponential B-splines in tension. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, vol. 2, pp. 361–364. Academic Press, Boston (1989)

    Google Scholar 

  16. Koch, P.E., Lyche, T.: Construction of exponential tension B-splines of arbitrary order. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 255–258. Academic Press, Boston (1991)

    Google Scholar 

  17. Kvasov, B., Sattayatham, P.: GB-splines of arbitrary order. J. Comput. Appl. Math. 104, 63–88 (1999)

    Article  MathSciNet  Google Scholar 

  18. Lyche, T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–173 (1985)

    Article  MathSciNet  Google Scholar 

  19. Lyche, T., Manni, C., Speleers, H.: Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement. In: Lyche, T., Manni, C., Speleers, H. (eds.) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Lecture Notes in Mathematics, vol. 2219, pp. 1–76. Springer International Publishing AG, Berlin (2018)

    Chapter  Google Scholar 

  20. Lyche, T., Schumaker, L.L.: A multiresolution tensor spline method for fitting functions on the sphere. SIAM J. Sci. Comput. 22, 724–746 (2000)

    Article  MathSciNet  Google Scholar 

  21. Manni, C., Pelosi, F., Sampoli, M.L.: Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 867–881 (2011)

    Article  MathSciNet  Google Scholar 

  22. Manni, C., Pelosi, F., Speleers, H.: Local hierarchical \(h\)-refinements in IgA based on generalized B-splines. In: Floater, M., Lyche, T., Mazure, M.L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces 2012. Lecture Notes in Computer Science, vol. 8177, pp. 341–363. Springer, Heidelberg (2014)

    Google Scholar 

  23. Manni, C., Reali, A., Speleers, H.: Isogeometric collocation methods with generalized B-splines. Comput. Math. Appl. 70, 1659–1675 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mazure, M.L.: Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)

    Article  MathSciNet  Google Scholar 

  25. Mazure, M.L.: Finding all systems of weight functions associated with a given extended Chebyshev space. J. Approx. Theory 163, 363–376 (2011)

    Article  MathSciNet  Google Scholar 

  26. Mazure, M.L.: How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)

    Article  MathSciNet  Google Scholar 

  27. Mazure, M.L.: Constructing totally positive piecewise Chebyshevian B-spline bases. J. Comput. Appl. Math. 342, 550–586 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nürnberger, G., Schumaker, L.L., Sommer, M., Strauss, H.: Generalized Chebyshevian splines. SIAM J. Math. Anal. 15, 790–804 (1984)

    Article  MathSciNet  Google Scholar 

  29. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10, 181–210 (1993)

    Article  MathSciNet  Google Scholar 

  30. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  31. Wang, G., Fang, M.: Unified and extended form of three types of splines. J. Comput. Appl. Math. 216, 498–508 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C. Manni and H. Speleers are members of the Gruppo Nazionale Calcolo Scientifico—Istituto Nazionale di Alta Matematica (GNCS-INdAM), and acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata (CUP E83C18000100006). The authors are grateful to the Centre International de Rencontres Mathématiques (CIRM, Luminy) and the Centro Internazionale per la Ricerca Matematica (CIRM, Trento) for the Research-in-Pairs support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyche, T., Manni, C., Speleers, H. (2019). Tchebycheffian B-Splines Revisited: An Introductory Exposition. In: Giannelli, C., Speleers, H. (eds) Advanced Methods for Geometric Modeling and Numerical Simulation. Springer INdAM Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-27331-6_8

Download citation

Publish with us

Policies and ethics