Skip to main content

Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weighted Quadrature

  • Chapter
  • First Online:
Advanced Methods for Geometric Modeling and Numerical Simulation

Part of the book series: Springer INdAM Series ((SINDAMS,volume 35))

Abstract

In this paper we introduce the quadrature needed in the isogeometric Galerkin method. Quadrature rules affect the cost of the assembly of the discrete counterpart of the IGA method, so that the search for efficient quadrature is an active research topic. The focus of the first part is on a brief survey on the contributions available for the reduction of computational costs for such issue. We review the generalized Gaussian strategies and the reduced quadrature. Then we present the novelty of weighted quadrature, recently proposed by Calabrò, Sangalli and Tani for the efficient assembly. We detail the construction of such rules and give some examples. Finally, we end with some remarks on current work and further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper the constant C is in general different at each occurrence.

References

  1. Adam, C., Bouabdallah, S., Zarroug, M., Maitournam, H.: Improved numerical integration for locking treatment in isogeometric structural elements, Part I: beams. Comput. Methods Appl. Mech. Eng. 279, 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  2. Adam, C., Bouabdallah, S., Zarroug, M., Maitournam, H.: Improved numerical integration for locking treatment in isogeometric structural elements, Part II: plates and shells. Comput. Methods Appl. Mech. Eng. 284, 106–137 (2015)

    Article  MathSciNet  Google Scholar 

  3. Adam, C., Hughes, T.J.R., Bouabdallah, S., Zarroug, M., Maitournam, H.: Selective and reduced numerical integrations for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 732–761 (2015)

    Article  MathSciNet  Google Scholar 

  4. Aimi, A., Calabrò, F., Diligenti, M., Sampoli, M.L., Sangalli, G., Sestini, A.: Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM. Comput. Methods Appl. Mech. Eng. 331, 327–342 (2018)

    Article  MathSciNet  Google Scholar 

  5. Ainsworth, M., Andriamaro, G., Davydov, O.: Bernstein-Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput. 33, 3087–3109 (2011)

    Article  MathSciNet  Google Scholar 

  6. Ainsworth, M., Davydov, O., Schumaker, L.L.: Bernstein Bézier finite elements on tetrahedral hexahedral pyramidal partitions. Comput. Methods Appl. Mech. Eng. 304, 140–170 (2016)

    Article  Google Scholar 

  7. Ait-Haddou, R., Bartoň, M., Calo, V.M.: Explicit Gaussian quadrature rules for \(C^1\) cubic splines with symmetrically stretched knot sequences. J. Comput. Appl. Math. 290, 543–552 (2015)

    Article  MathSciNet  Google Scholar 

  8. Antolin, P., Buffa, A., Calabrò, F., Martinelli, M., Sangalli, G.: Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization. Comput. Methods Appl. Mech. Eng. 285, 817–828 (2015)

    Article  MathSciNet  Google Scholar 

  9. Auricchio, F., Calabrò, F., Hughes, T.J.R., Reali, A., Sangalli, G.: A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 249, 15–27 (2012)

    Article  MathSciNet  Google Scholar 

  10. Isogeometric collocation methods: Auricchio, F., Beiraõ da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G. Math. Model. Methods Appl. Sci. 20, 2075–2107 (2010)

    Article  Google Scholar 

  11. Bartoň, M., Ait-Haddou, R., Calo, V.M.: Gaussian quadrature rules for \(C^{1}\) quintic splines with uniform knot vectors. J. Comput. Appl. Math. 322, 57–70 (2017)

    Article  MathSciNet  Google Scholar 

  12. Bartoň, M., Calo, V.M.: Gaussian quadrature for splines via homotopy continuation: Rules for \(C^2\) cubic splines. J. Comput. Appl. Math. 296, 709–723 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bartoň, M., Calo, V.M.: Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 305, 217–240 (2016)

    Article  MathSciNet  Google Scholar 

  14. Bartoň, M., Calo, V.M.: Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis. Comput. Aided Des. 82, 57–67 (2017)

    Article  MathSciNet  Google Scholar 

  15. Beiraõ da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h\)\(p\)\(k\)-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    Google Scholar 

  16. Mathematical analysis of variational isogeometric methods: Beiraõ da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R. Acta Num. 23, 157–287 (2014)

    Article  Google Scholar 

  17. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32, 1761–1788 (2010)

    Article  MathSciNet  Google Scholar 

  18. Calabrò, F., Falini, A., Sampoli, M.L., Sestini, A.: Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs. J. Comput. Appl. Math. 338, 153–167 (2018)

    Article  MathSciNet  Google Scholar 

  19. Calabrò, F., Manni, C.: The choice of quadrature in NURBS-based isogeometric analysis. In: Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM) (2013)

    Google Scholar 

  20. Calabrò, F., Sangalli, G., Tani, M.: Fast formation of isogeometric Galerkin matrices by weighted quadrature. Comput. Methods Appl. Mech. Eng. 316, 606–622 (2017)

    Article  MathSciNet  Google Scholar 

  21. Cheng, H., Rokhlin, V., Yarvin, N.: Nonlinear optimization, quadrature, and interpolation. SIAM J. Optim. 9, 901–923 (1999)

    Article  MathSciNet  Google Scholar 

  22. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)

    Book  Google Scholar 

  23. De Falco, C., Reali, A., Vázquez, R.: GeoPDEs: A research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42, 1020–1034 (2011)

    Article  Google Scholar 

  24. Deng, Q., Bartoň, M., Puzyrev, V., Calo, V.: Dispersion-minimizing quadrature rules for \(C^1\) quadratic isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 554–564 (2018)

    Article  MathSciNet  Google Scholar 

  25. Eibner, T., Melenk, J.M.: Fast algorithms for setting up the stiffness matrix in \(hp\)-FEM: a comparison. HERCMA 2005 Conference Proceedings, Techn. Univ. Chemnitz, SFB 393 (2006)

    Google Scholar 

  26. Fahrendorf, F., De Lorenzis, L., Gomez, H.: Reduced integration at superconvergent points in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 390–410 (2018)

    Article  MathSciNet  Google Scholar 

  27. Falini, A., Giannelli, C., Kanduc, T., Sampoli, M.L., Sestini, A.: An adaptive IGA-BEM with hierarchical B-splines based on quasi-interpolation quadrature schemes. Int. J. Numer. Meth. Eng. 117(10), 1038–1058 (2019)

    Article  MathSciNet  Google Scholar 

  28. Falini, A., Kanduc, T.: Spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM. This same collection (in press)

    Google Scholar 

  29. Hiemstra, R.R., Calabrò, F., Schillinger, D., Hughes, T.J.R.: Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 966–1004 (2017)

    Article  MathSciNet  Google Scholar 

  30. Hiemstra, R.R., Sangalli, G., Tani, M., Calabrò, F., Hughes, T.J.R.: Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity (in preparation)

    Google Scholar 

  31. Hillman, M., Chen, J.S., Bazilevs, Y.: Variationally consistent domain integration for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 521–540 (2015)

    Article  MathSciNet  Google Scholar 

  32. Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)

    Article  MathSciNet  Google Scholar 

  33. Hughes, T.J.R., Sangalli, G.: Mathematics of isogeometric analysis: a conspectus. Encyclopedia of Computational Mechanics, 2nd edn, pp. 1–40. Wiley, Hoboken (2018)

    Google Scholar 

  34. Johannessen, K.A.: Optimal quadrature for univariate and tensor product splines. Comput. Methods Appl. Mech. Eng. 316, 84–99 (2017)

    Article  MathSciNet  Google Scholar 

  35. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33, 971–996 (1996)

    Article  MathSciNet  Google Scholar 

  36. Mantzaflaris, A., Jüttler, B.: Exploring matrix generation strategies in isogeometric analysis. Mathematical Methods for Curves and Surfaces, pp. 364–382. Springer, Berlin (2014)

    Chapter  Google Scholar 

  37. Mantzaflaris, A., Jüttler, B.: Integration by interpolation and look-up for Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 373–400 (2015)

    Article  MathSciNet  Google Scholar 

  38. Mantzaflaris, A., Jüttler, B., Khoromskij, B., Langer, U.: Matrix generation in isogeometric analysis by low rank tensor approximation. Curves and Surfaces, pp. 321–340. Springer, Berlin (2014)

    Google Scholar 

  39. Mantzaflaris, A., Jüttler, B., Khoromskij, B.N., Langer, U.: Low rank tensor methods in Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 1062–1085 (2017)

    Article  MathSciNet  Google Scholar 

  40. Micchelli, C.A., Pinkus, A.: Moment theory for weak Chebyshev systems with applications to monosplines, quadrature formulae and best one-sided \(L^1\)-approximation by spline functions with fixed knots. SIAM J. Math. Anal. 8, 206–230 (1977)

    Article  MathSciNet  Google Scholar 

  41. Montardini, M., Sangalli, G., Tamellini, L.: Optimal-order isogeometric collocation at Galerkin superconvergent points. Comput. Methods Appl. Mech. Eng. 316, 741–757 (2017)

    Article  MathSciNet  Google Scholar 

  42. Montardini, M., Sangalli, G., Tani, M.: Robust isogeometric preconditioners for the Stokes system based on the fast diagonalization method. Comput. Methods Appl. Mech. Eng. 338, 162–185 (2018)

    Article  MathSciNet  Google Scholar 

  43. Nikolov, G.: On certain definite quadrature formulae. J. Comput. Appl. Math. 75, 329–343 (1996)

    Article  MathSciNet  Google Scholar 

  44. Puzyrev, V., Deng, Q., Calo, V.: Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Comput. Methods Appl. Mech. Eng. 320, 421–443 (2017)

    Article  MathSciNet  Google Scholar 

  45. Sangalli, G., Tani, M.: Isogeometric preconditioners based on fast solvers for the Sylvester equation. SIAM J. Sci. Comput. 38, A3644–A3671 (2016)

    Article  MathSciNet  Google Scholar 

  46. Sangalli, G., Tani, M.: Matrix-free weighted quadrature for a computationally efficient isogeometric \(k\)-method. Comput. Methods Appl. Mech. Eng. 338, 117–133 (2018)

    Article  MathSciNet  Google Scholar 

  47. Schillinger, D., Evans, J.A., Reali, A., Scott, M., Hughes, T.: Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Eng. 267, 170–232 (2013)

    Article  MathSciNet  Google Scholar 

  48. Schillinger, D., Hossain, S.J., Hughes, T.J.R.: Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 277, 1–45 (2014)

    Article  Google Scholar 

  49. Schoenberg, I.J.: Spline functions, convex curves and mechanical quadrature. Bull. Am. Math. Soc. 64, 352–357 (1958)

    Article  MathSciNet  Google Scholar 

  50. Tani, M.: A preconditioning strategy for linear systems arising from nonsymmetric schemes in isogeometric analysis. Comput. Math. Appl. 74, 1690–1702 (2017)

    Article  MathSciNet  Google Scholar 

  51. Vázquez, R.: A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Comput. Math. Appl. 72, 523–554 (2016)

    Article  MathSciNet  Google Scholar 

  52. Vermeulen, A.H., Bartels, R.H., Heppler, G.R.: Integrating products of B-splines. SIAM J. Sci. Stat. Comput. 13, 1025–1038 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Calabrò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calabrò, F., Loli, G., Sangalli, G., Tani, M. (2019). Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weighted Quadrature. In: Giannelli, C., Speleers, H. (eds) Advanced Methods for Geometric Modeling and Numerical Simulation. Springer INdAM Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-27331-6_3

Download citation

Publish with us

Policies and ethics