Skip to main content

Structural Characterization of Aerogels

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

Abstract

Determining reliable structural parameters for an aerogel by applying suitable characterization techniques is a key factor in terms of understanding the different synthesis steps and their impact on the resulting aerogel. Combining structural parameters with the physical properties of the material allows optimization for specific applications. It is only the profound knowledge of the structure–properties relationships that provides access to the full potential of this type of material. This chapter presents different characterization methods commonly used and discusses their potential and limitations. Furthermore, more recent developments and new approaches are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758 (1994)

    CAS  Google Scholar 

  2. Schüth, F., Sing, K.S.W., Weitkamp, J.: Handbook of Porous Solids, vol. 1. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  3. Bourret, A.: Low-Density Silica Aerogels Observed by High-Resolution Electron Microscopy. Europhys. Lett. 6, 731–737 (1988)

    CAS  Google Scholar 

  4. Du, H., Li, B., Kang, F., Fu, R., Zeng, Y.: Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon. 45, 429–435 (2007)

    CAS  Google Scholar 

  5. Guilminot, E.: Use of cellulose-based carbon aerogels as catalyst support for pem fuel cell electrodes: electrochemical characterization. J. Power Sources. 166, 104–111 (2007)

    CAS  Google Scholar 

  6. Hara, H.S., Smirnova, A.: Method of Preparing Membrane Electrode Assemblies with Aerogel Supported Catalyst, Patent (2005)

    Google Scholar 

  7. Job, J., Heinrichs, B., Lambert, S., Pirard, J.P., Colomer, J.F., Vertruyen, B., Marien, J.: Carbon xerogels as catalyst supports: study of mass transfer. Am. Inst. Chem. Eng. 52, 2663–2676 (2006)

    CAS  Google Scholar 

  8. Job, N., Heinrichs, B., Ferauche, F., Noville, F., Marien, J., Pirard, J.P.: Hydrodechlorination of 1,2-dichloroethane on Pd-Ag catalysts supported on tailored texture carbon xerogels. Catal. Today. 102, 234–241 (2005)

    Google Scholar 

  9. Job, N., Pereira, M.F.R., Lambert, S., Cabiac, A., Delahay, G., Colomer, J.F., Marien, J., Figueiredo, J.L., Pirard, J.P.: Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. J. Catal. 240, 160–171 (2006)

    CAS  Google Scholar 

  10. Maldonado-Hodar, F.J., Ferro-Garcia, M.A., Rivera-Utrilla, J., Moreno-Castilla, C.: Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon. 37, 1199–1205 (1999)

    CAS  Google Scholar 

  11. Maldonado-Hodar, F.J., Moreno-Castilla, C., Perez-Cadenas, A.F.: Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Appl. Catal. B Environ. 54, 217–224 (2004)

    CAS  Google Scholar 

  12. Maldonado-Hodar, F.J., Moreno-Castilla, C., Perez-Cadenas, A.F.: Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Microporous Mesoporous Mater. 69, 119–125 (2004)

    CAS  Google Scholar 

  13. Maldonado-Hodar, F.J., Perez-Cadenas, A.F., Moreno-Castilla, C.: Morphology of heat-treated tunsgten doped monolithic carbon aerogels. Carbon. 41, 1291–1299 (2003)

    CAS  Google Scholar 

  14. Moreno-Castilla, C., Maldonado-Hodar, F.J.: Carbon aerogels for catalysis applications: an overview. Carbon. 43, 455–465 (2005)

    CAS  Google Scholar 

  15. Moreno-Castilla, C., Maldonado-Hodar, F.J., Perez-Cadenas, A.F.: Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels. Langmuir. 19, 5650–5655 (2003)

    CAS  Google Scholar 

  16. Padilla-Serrano, M.N., Maldonado-Hodar, F., Moreno-Castilla, C.: Influence of Pt particle size on catalytic combustion of xylenes on carbon aerogel-supported Pt catalysts. Appl. Catal. B Environ. 61, 253–258 (2005)

    CAS  Google Scholar 

  17. Sanchez-Polo, M., Rivera-Utrilla, J., von Gunten, U.: Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Res. 40, 3375–3384 (2006)

    CAS  Google Scholar 

  18. Soler, R., Cacchi, S., Fabrizi, G., Forte, G., Martín, L., Martínez, S.: Sonogashira cross-coupling using carbon aerogel doped with palladium nanoparticles; a recoverable and reusable catalyst. Synthesis. 19, 3068–3072 (2007)

    Google Scholar 

  19. Stroud, R.M., Long, J.W., Pietron, J.J., Rolison, D.R.: A practical guide to transmission electron microscopy of aerogels. J. Non-Cryst. Solids. 350, 277–284 (2004)

    CAS  Google Scholar 

  20. Job, N., Pirard, R., Vertruyen, B., Colomer, J.-F., Marien, J., Pirard, J.-P.: Synthesis of transition metal-doped carbon xerogels by cogelation. J. Non-Cryst. Solids. 353, 2333–2345 (2007)

    CAS  Google Scholar 

  21. Marliere, C., Despetis, F., Etienne, P., Woignier, T., Dieudonne, P., Phalippou, J.: Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments. J. Non-Cryst. Solids. 285, 148–153 (2001)

    CAS  Google Scholar 

  22. Reichenauer, G., Fricke, J., Manara, J., Henkel, J.: Switching silica aerogels from transparent to opaque. J. Non-Cryst. Solids. 350, 364–371 (2004)

    CAS  Google Scholar 

  23. Beck, A.: Optische Streuuntersuchungen an Porösen Sio2-Systemen, Diplomarbeit, Thesis (Physikalisches Institut, EP II Würzburg, Bayerische Julius-Maximilians-Universität Würzburg, 1988)

    Google Scholar 

  24. Glatter, O., Kratky, O.: Small Angle X-Ray Scattering. Academic, London (1982)

    Google Scholar 

  25. Emmerling, A., Petricevic, R., Beck, A., Wang, P., Scheller, H., Fricke, J.: Relationship between optical transparency and nanostructural features of silica aerogels. J. Non-Cryst. Solids. 185, 240–248 (1995)

    CAS  Google Scholar 

  26. Posselt, D., Pedersen, J.S., Mortensen, K.: A sans investigation on absolute scale of a homologous series of base-catalyzed silica aerogels. J. Non-Cryst. Solids. 145, 128–132 (1992)

    CAS  Google Scholar 

  27. Scherdel, C., Reichenauer, G.: The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon. 50, 3074–3082 (2012)

    CAS  Google Scholar 

  28. Kjems, J.K., Freltoft, T., Richter, D., Sinha, S.K.: Neutron-scattering from fractals. Phys B C. 136, 285–290 (1986)

    CAS  Google Scholar 

  29. Emmerling, A., Fricke, J.: Small-angle scattering and the structure of aerogels. J. Non-Cryst. Solids. 145, 113–120 (1992)

    CAS  Google Scholar 

  30. Aristov, Y.I., Lisitsa, N., Zaikovski, V.I., Lorenc, J., Jarzebski, A.B.: Fractal structure in base-catalyzed silica aerogels examined by Tem, Saxs and Porosimetry. React. Kinet. Catal. Lett. 58, 367–375 (1996)

    CAS  Google Scholar 

  31. Bock, V., Emmerling, A., Fricke, J.: Influence of monomer and catalyst concentration on Rf and carbon aerogel structure. J. Non-Cryst. Solids. 225, 69–73 (1998)

    CAS  Google Scholar 

  32. Pahl, R., Bonse, U., Pekala, R.W., Kinney, J.H.: Saxs investigations on organic aerogels. J. Appl. Crystallogr. 24, 771–776 (1991)

    CAS  Google Scholar 

  33. Barbieri, O., Ehrburger-Dolle, F., Rieker, T.P., Pajonk, G.M., Pinto, N., Rao, A.V.: Small-angle X-ray scattering of a new series of organic aerogels. J. Non-Cryst. Solids. 285, 109–115 (2001)

    CAS  Google Scholar 

  34. Gommes, C.J., Job, N., Pirard, J.P., Blacher, S., Goderis, B.: Critical opalescence points to thermodynamic instability: relevance to small-angle X-ray scattering of resorcinol-formaldehyde gel formation at low Ph. J. Appl. Crystallogr. 41, 663–668 (2008)

    CAS  Google Scholar 

  35. Schaefer, D.W., Pekala, R., Beaucage, G.: Origin of porosity in resorcinol-formaldehyde aerogels. J. Non-Cryst. Solids. 186, 159–167 (1995)

    CAS  Google Scholar 

  36. Cohaut, N., Thery, A., Guet, J.M., Rouzaud, J.N., Kocon, L.: The porous network in carbon aerogels investigated by small angle neutron scattering. Carbon. 45, 1185–1192 (2007)

    CAS  Google Scholar 

  37. Eschricht, N., Hoinkis, E., Madler, F., Schubert-Bischoff, P., Rohl-Kuhn, B.: Knowledge-based reconstruction of random porous media. J. Colloid Interface Sci. 291, 201–213 (2005)

    CAS  Google Scholar 

  38. Kainourgiakis, M.E., Steriotis, T.A., Kikkinides, E.S., Charalambopoulou, G.C., Ramsay, J.D.F., Stubos, A.K.: Combination of small angle neutron scattering data and mesoscopic simulation techniques as a tool for the structural characterization and prediction of properties of bi-phasic media. Chem. Phys. 317, 298–311 (2005)

    CAS  Google Scholar 

  39. Ehrburger-Dolle, F., Fairen-Jimenez, D., Berthon-Fabry, S., Achard, P., Bley, F., Carrasco-Marin, F., Djurado, D., Moreno-Castilla, C., Morfin, I.: Nanoporous carbon materials: comparison between information obtained by Saxs and Waxs and by gas adsorption. Carbon. 43, 3009–3012 (2005)

    CAS  Google Scholar 

  40. Fairen-Jimenez, D., Carrasco-Marin, F., Djurado, D., Francoise, B., Ehrburger-Dolle, F., Moreno-Castilla, C.: Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J. Phys. Chem. B. 110, 8681–8688 (2006)

    CAS  Google Scholar 

  41. Reim, M., Reichenauer, G., Körner, W., Manara, J., Arduini-Schuster, M., Korder, S., Beck, A., Fricke, J.: Silica-aerogel granulate – structural, optical and thermal properties. J. Non-Cryst. Solids. 350, 358–363 (2004)

    CAS  Google Scholar 

  42. Li, T.M., Du, A., Zhang, T., Ding, W.H., Liu, M.F., Shen, J., Zhang, Z.H., Zhou, B.: Continuous adjustment of fractal dimension of silica aerogels. J. Non-Cryst. Solids. 499, 159–166 (2018)

    CAS  Google Scholar 

  43. Rigacci, A., Ehrburger-Dolle, F., Geissler, E., Chevalier, B., Sallee, H., Achard, P., Barbieri, O., Berthon, S., Bley, F., Livet, F., Pajonk, G.M., Pinto, N., Rochas, C.: Investigation of the multi-scale structure of silica aerogels by Saxs. J. Non-Cryst. Solids. 285, 187–193 (2001)

    CAS  Google Scholar 

  44. Lours, T., Zarzycki, J., Craievich, A.F., Aegerter, M.A.: Textural characteristics of silica aerogels from Saxs experiments. J. Non-Cryst. Solids. 121, 216–220 (1990)

    CAS  Google Scholar 

  45. Boukenter, A., Champagnon, D., Dumas, J., Duval, E., Quinson, J.F., Rousset, J.L., Serughetti, J., Etienne, S., Mai, C.: A Saxs study of silica aerogels. J Phys Paris. 50, C4133–C4136 (1989)

    Google Scholar 

  46. Wang, P., Emmerling, A., Tappert, W., Spormann, O., Fricke, J., Haubold, H.G.: High-temperature and low-temperature supercritical drying of aerogels – structural investigations with Saxs. J. Appl. Crystallogr. 24, 777–780 (1991)

    CAS  Google Scholar 

  47. Haereid, S., Anderson, J., Einarsrud, M.A., Hua, D.W., Smith, D.M.: Thermal and temporal aging of Tmos-based aerogel precursors in water. J. Non-Cryst. Solids. 185, 221–226 (1995)

    Google Scholar 

  48. Reichenauer, G.: Thermal aging of silica gels in water. J. Non-Cryst. Solids. 350, 189–195 (2004)

    CAS  Google Scholar 

  49. Iswar, S., Malfait, W.J., Balog, S., Winnefeld, F., Lattuada, M., Koebel, M.M.: Effect of aging on silica aerogel properties. Microporous Mesoporous Mater. 241, 293–302 (2017)

    CAS  Google Scholar 

  50. Berthon, S., Barbieri, O., Ehrburger-Dolle, F., Geissler, E., Achard, P., Bley, F., Hecht, A.M., Livet, F., Pajonk, G.M., Pinto, N., Rigaci, A., Rochas, C.: Dls and Saxs investigations of organic gels and aerogels. J. Non-Cryst. Solids. 285, 154–161 (2001)

    CAS  Google Scholar 

  51. Bock, V., Emmerling, A., Saliger, R., Fricke, J.: Structural investigation of resorcinol formaldehyde and carbon aerogels using Saxs and Bet. J. Porous. Mater. 4, 287–294 (1997)

    CAS  Google Scholar 

  52. Duan, Y.N., Jana, S.C., Lama, B., Espe, M.P.: Self-crosslinkable poly(urethane urea)-reinforced silica aerogels. RSC Adv. 5, 71551–71558 (2015)

    CAS  Google Scholar 

  53. Duan, Y.N., Jana, S.C., Lama, B., Espe, M.P.: Hydrophobic silica aerogels by silylation. J. Non-Cryst. Solids. 437, 26–33 (2016)

    CAS  Google Scholar 

  54. Börner, M., Noisser, T., Reichenauer, G.: Cross-linked monolithic xerogels based on silica nanoparticles. Chem. Mater. 25, 3648–3653 (2013)

    Google Scholar 

  55. Pircher, N., Carbajal, L., Schimper, C., Bacher, M., Rennhofer, H., Nedelec, J.M., Lichtenegger, H.C., Rosenau, T., Liebner, F.: Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose. 23, 1949–1966 (2016)

    CAS  Google Scholar 

  56. Zhao, L.L., Wang, S.X., Wang, Y.Y., Li, Z.H.: Thermal stability of anatase Tio2 aerogels. Surf. Interface Anal. 49, 173–176 (2017)

    CAS  Google Scholar 

  57. Reichenauer, G.: Properties of carbon aerogels and their organic precursors. In: Organic and Carbon Gels – From Laboratory Synthesis to Applications, Advances in Sol-Gel Derived Materials and Technologies, pp. 87–116. Springer (2019)

    Google Scholar 

  58. Tamon, H., Ishizaka, E.: Saxs study on gelation process in preparation of resorcinol-formaldehyde aerogel. J. Coll. Interface Sci. 206, 577–582 (1998)

    CAS  Google Scholar 

  59. Scherdel, C., Reichenauer, G.: Carbon xerogels synthesized via phenol-formaldehyde gels. Microporous Mesoporous Mater. 126, 133–142 (2009)

    CAS  Google Scholar 

  60. Gommes, C., Blacher, S., Goderis, B., Pirard, R., Heinrichs, B., Alie, C., Pirard, J.P.: In situ Saxs analysis of silica gel formation with an additive. J. Phys. Chem. B. 108, 8983–8991 (2004)

    CAS  Google Scholar 

  61. Scherdel, C., Reichenauer, G.: Drying Process of Gels Derived from Phenolic Resins – Monitoring of Structural Changes by Saxs, Technical Report. Bavarian Center for Applied Energy Research (2008)

    Google Scholar 

  62. Reichenauer, G., Wiener, M., Brandt, A., Wallacher, D.: In-Situ Monitoring of the Deformation of Nanopores Due to Capillary Forces Upon Vapor Sorption, Technical Report. HMI (2008)

    Google Scholar 

  63. Berthon-Fabry, S., Langohr, D., Achard, P., Charrier, D., Djurado, D., Ehrburger-Dolle, F.: Anisotropic high-surface-area carbon aerogels. J. Non-Cryst. Solids. 350, 136–144 (2004)

    CAS  Google Scholar 

  64. Scherdel, C., Weigold, L., Reichenauer, G.: Anisotropic Scattering Patterns of Aerogels Upon Uniaxial Compression, Technical Report (2013)

    Google Scholar 

  65. Weigold, L., Reichenauer, G.: Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Cryst. Solids. 406, 73–78 (2014)

    CAS  Google Scholar 

  66. Weber, C., Reichenauer, G., Pflaum, J.: Electroless preparation and asaxs microstructural analysis of pseudocapacitive carbon manganese oxide supercapacitor electrodes. Langmuir. 31, 782–788 (2015)

    CAS  Google Scholar 

  67. Weber, C.: Electrochemical Energy Storage: Carbon Xerogel-Manganese Oxide Composites as Supercapacitor Electrode Materials. Dissertation Doktor Thesis, Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg (2015)

    Google Scholar 

  68. Courtens, E., Pelous, J., Phalippou, J., Vacher, R., Woignier, T.: Acoustic dispersion in silica aerogels observed by brillouin-scattering – evidence for phonon-fracton crossover. J. Non-Cryst. Solids. 95-6, 1175–1180 (1987)

    Google Scholar 

  69. Courtens, E., Pelous, J., Phalippou, J., Vacher, R., Woignier, T.: Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys. Rev. Lett. 58, 128–131 (1987)

    CAS  Google Scholar 

  70. Anglaret, E., Pelous, J., Hrubesh, L.H.: Structural-changes and elastic properties in aerogels investigated by Brillouin-scattering. J. Non-Cryst. Solids. 186, 137–141 (1995)

    CAS  Google Scholar 

  71. Calas, S., Levelut, C., Woignier, T., Pelous, J.: Brillouin scattering study of sintered and compressed aerogels. J. Non-Cryst. Solids. 225, 244–247 (1998)

    CAS  Google Scholar 

  72. Caponi, S., Fontana, A., Mattarelli, M., Montagna, M., Terki, F., Woignier, T.: Influence of thermal treatment in high and low frequency dynamics of silica porous systems. J. Non-Cryst. Solids. 345–346, 61–65 (2004)

    Google Scholar 

  73. Buchenau, U., Monkenbusch, M., Reichenauer, G., Frick, B.: Inelastic neutron-scattering from virgin and densified aerogels. J. Non-Cryst. Solids. 145, 121–127 (1992)

    CAS  Google Scholar 

  74. Conrad, H., Buchenau, U., Schatzler, R., Reichenauer, G., Fricke, J.: Crossover in the vibrational density of states of silica aerogels studied by high-resolution neutron spectroscopy. Phys. Rev. B. 41, 2573–2576 (1990)

    CAS  Google Scholar 

  75. Conrad, H., Fricke, J., Reichenauer, G.: High-resolution neutron spectroscopy of the crossover in the vibrational density of states of silica aerogels. J. Phys. Paris. 50, C4157–C4162 (1989)

    Google Scholar 

  76. Courtens, E., Lartigue, C., Mezei, F., Vacher, R., Coddens, G., Foret, M., Pelous, J., Woignier, T.: Measurement of the phonon-fracton crossover in the density of states of silica aerogels. Zeitschrift Phys. B Condensed Matter. 79, 1–2 (1990)

    CAS  Google Scholar 

  77. Vacher, R., Courtens, E., Coddens, G., Heidemann, A., Tsujimi, Y., Pelous, J., Foret, M.: Crossovers in the density of states of fractal silica aerogels. Phys. Rev. Lett. 65, 1008–1011 (1990)

    CAS  Google Scholar 

  78. Reichenauer, G.: Aerogels. In: Seidel, A. (ed.) Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, Hoboken (2008)

    Google Scholar 

  79. Ghafar, A., Parikka, K., Haberthur, D., Tenkanen, M., Mikkonen, K.S., Suuronen, J.P.: Synchrotron microtomography reveals the fine three-dimensional porosity of composite polysaccharide aerogels. Materials. 10, 871 (2017)

    Google Scholar 

  80. Gilani, M.S., Boone, M.N., Fife, J.L., Zhao, S.Y., Koebel, M.M., Zimmermann, T., Tingaut, P.: Structure of cellulose -silica hybrid aerogel at sub-micron scale, studied by synchrotron X-ray tomographic microscopy. Compos. Sci. Technol. 124, 71–80 (2016)

    Google Scholar 

  81. Iswar, S., Griffa, M., Kaufmann, R., Beltran, M., Huber, L., Brunner, S., Lattuada, M., Koebel, M.M., Malfait, W.J.: Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study. Microporous Mesoporous Mater. 278, 289–296 (2019)

    CAS  Google Scholar 

  82. Tannert, R., Schwan, M., Rege, A., Eggeler, M., da Silva, J.C., Bartsch, M., Milow, B., Itskov, M., Ratke, L.: The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84, 391–399 (2017)

    CAS  Google Scholar 

  83. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Google Scholar 

  84. Reichenauer, G., Scherer, G.W.: Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids. 277, 162–172 (2000)

    CAS  Google Scholar 

  85. Reichenauer, G., Scherer, G.W.: Nitrogen sorption in aerogels. J. Non-Cryst. Solids. 285, 167–174 (2001)

    CAS  Google Scholar 

  86. Reichenauer, G., Scherer, G.W.: Effects upon nitrogen sorption analysis in aerogels. J. Colloid Interface Sci. 236, 385–386 (2001)

    CAS  Google Scholar 

  87. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  88. Salazar, R., Gelb, L.D.: An investigation of the effects of the structure of gel materials on their adsorptive properties using a simple lattice-gas model. Mol. Phys. 102, 1015–1030 (2004)

    CAS  Google Scholar 

  89. Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids: macroscopic approach and density functional theory. Langmuir. 27, 6926–6931 (2011)

    CAS  Google Scholar 

  90. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Coll. Surf. A. 437, 3–32 (2013)

    CAS  Google Scholar 

  91. Olivier, J.P.: Modeling physical adsorption on porous and nonporous solids using density functional theory. J. Porous. Mater. 2, 9–17 (1995)

    CAS  Google Scholar 

  92. Olivier, J.P., Conklin, W.B., Vonszombathely, M.: Determination of pore-size distribution from density-functional theory – a comparison of nitrogen and argon results. Character. Porous Solids III. 87, 81–89 (1994)

    CAS  Google Scholar 

  93. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic (1982)

    Google Scholar 

  94. Webb, P.A., Orr, C.: Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, Norcross (1997)

    Google Scholar 

  95. Reichenauer, G., Stumpf, C., Fricke, J.: Characterization of Sio2, Rf and carbon aerogels by dynamic gas-expansion. J. Non-Cryst. Solids. 186, 334–341 (1995)

    CAS  Google Scholar 

  96. Wiener, M., Reichenauer, G.: Microstructure of porous carbons derived from phenolic resin – impact of annealing at temperatures up to 2000°C analyzed by complementary characterization methods. Microporous Mesoporous Mater. 203, 116–122 (2015)

    CAS  Google Scholar 

  97. Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V.: Sorbtsiya I Struktura Aktivnykh Uglei.1. Issledovanie Adsorbtsii Organicheskikh Parov. Zhurnal Fizicheskoi Khimii. 21, 1351–1362 (1947)

    CAS  Google Scholar 

  98. Cadenhead, D.A., Danielli, J.F., Rosenberg, M.D. (eds.): Progress in surface and membrane science. Academic (1975)

    Google Scholar 

  99. Stoeckli, H.F., Rebstein, P., Ballerini, L.: On the assessment of microporosity in active carbons, a comparison of theoretical and experimental data. Carbon. 28, 907–909 (1990)

    CAS  Google Scholar 

  100. Noville, F., Gommes, C., Doneux, C., Brasseur, A., Pirard, R., Pirard, J.P.: Is it possible to obtain a coherent image of the texture of a porous material? Stud. Surf. Sci. Catal. 144, 419–426 (2002)

    CAS  Google Scholar 

  101. Scherdel, C., Reichenauer, G., Wiener, M.: Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by Dr-, Bet- and T-Plot. Microporous Mesoporous Mater. 132, 572–575 (2010)

    CAS  Google Scholar 

  102. Wood, G.O.: Estimating micropore volumes of activated carbonaceous adsorbents for organic chemical vapors. In: Proceedings of the European Carbon Conference “Carbon 1996”, pp. 606–607 (1996)

    Google Scholar 

  103. Chmiel, G., Lajtar, L., Sokolowski, S., Patrykiejew, A.: Adsorption in energetically heterogeneous slit-like pores: comparison of density functional theory and computer simulations. J. Chem. Soc. Faraday Trans. 90, 1153–1156 (1994)

    CAS  Google Scholar 

  104. Ravikovitch, P.I., Neimark, A.V.: Characterization of micro- and mesoporosity in Sba-15 materials from adsorption data by the Nldft method. J. Phys. Chem. B. 105, 6817–6823 (2001)

    CAS  Google Scholar 

  105. Jagiello, J., Olivier, J.P.: A simple two-dimensional Nldft model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C. 113, 19382–19385 (2009)

    CAS  Google Scholar 

  106. Harkins, W.D., Jura, G.: Surfaces of solids. Xii. An absolute method for the determination of the area of a finely divided crystalline solid. J. Am. Chem. Soc. 66, 1362–1366 (1944)

    CAS  Google Scholar 

  107. Magee, R.W.: Evaluation of the external surface area of carbon black by nitrogen adsorption. Rubber Chem. Technol. 68, 590–600 (1994)

    Google Scholar 

  108. Mikhail, R.S., Brunauer, S., Bodor, E.E.: Investigations of a complete pore structure analysis: II. Analysis of 4 silica gels. J. Coll. Interface Sci. 26, 54 (1968)

    CAS  Google Scholar 

  109. Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley (1979)

    Google Scholar 

  110. Scherer, G.W., Smith, D.M.: Cavitation during drying of a gel. J. Non-Cryst. Solids. 189, 197–211 (1995)

    CAS  Google Scholar 

  111. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances: I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    CAS  Google Scholar 

  112. Reichenauer, G., Scherer, G.W.: Extracting the pore size distribution of compliant materials from nitrogen adsorption. Coll. Surface A. 187, 41–50 (2001)

    Google Scholar 

  113. Scherer, G.W., Smith, D.M., Stein, D.: Deformation of aerogels during characterization. J. Non-Cryst. Solids. 186, 309–315 (1995)

    CAS  Google Scholar 

  114. Gross, J., Reichenauer, G., Fricke, J.: Mechanical-properties of Sio2 aerogels. J. Phys. D Appl. Phys. 21, 1447–1451 (1988)

    CAS  Google Scholar 

  115. Scherer, G.W.: Dilatation of porous glass. J. Am. Ceram. Soc. 69, 473–480 (1986)

    CAS  Google Scholar 

  116. Balzer, C.: Adsorption-Induced Deformation of Nanoporous Materials – In-Situ Dilatometry and Modeling. PhD thesis (Physics Department, Wuerzburg University, 2017)

    Google Scholar 

  117. Balzer, C., Cimino, R.T., Gor, G.Y., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbons during N2, Ar, and Co2 adsorption: insight from the density functional theory. Langmuir. 32, 8265–8274 (2016)

    CAS  Google Scholar 

  118. Kowalczyk, P., Balzer, C., Reichenauer, G., Terzyk, A.P., Gauden, P.A., Neimark, A.V.: Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon. 103, 263–272 (2016)

    CAS  Google Scholar 

  119. Gommes, C.J., Noville, F., Pirard, J.P.: Characterization of gels via solvent desorption measurements. Adsorption. 13, 533–540 (2007)

    CAS  Google Scholar 

  120. Reichenauer, G., Pfrang, T., Hofmann, M.: Drying of meso- and macroporous gels – length change and drying dynamics. Coll. Surf. A Physicochem. Eng. Aspects. 300, 211–215 (2007)

    CAS  Google Scholar 

  121. Micromeritics Application Note 104. https://www.micromeritics.com/repository/files/apnote104.pdf. Accessed 27 Mar 2019

  122. Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23, 9–19 (2006)

    Google Scholar 

  123. Broecker, F.J., Heckmann, W., Fischer, F., Mielke, M., Schroeder, J., Stange, A.: Structural analysis of granular silica aerogels. In: Fricke, J. (ed.) Proceedings of the International Symposium on Aerogels, pp. 160–166. Springer (1985)

    Google Scholar 

  124. Brown, S.M., Lard, E.W.: Comparison of nitrogen and mercury pore-size distributions of silicas of varying pore volume. Powder Technol. 9, 187–190 (1974)

    Google Scholar 

  125. Pirard, R., Heinrichs, B., Van Cantfort, O., Pirard, J.P.: Mercury porosimetry applied to low density xerogels; relation between structure and mechanical properties. J. Sol-Gel Sci. Technol. 13, 335–339 (1998)

    CAS  Google Scholar 

  126. Pirard, R., Pirard, J.P.: Mercury porosimetry applied to precipitated silica. Stud. Surf. Sci. Catal. 128, 603–611 (2000)

    CAS  Google Scholar 

  127. Job, N., Pirard, R., Pirard, J.P., Alie, C.: Non intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part. Part. Syst. Charact. 23, 72–81 (2006)

    CAS  Google Scholar 

  128. Pirard, R., Alie, C., Pirard, J.P.: Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol. 128, 242–247 (2002)

    CAS  Google Scholar 

  129. Scherer, G.W., Smith, D.M., Qiu, X., Anderson, J.M.: Compression of aerogels. J. Non-Cryst. Solids. 186, 316–320 (1995)

    CAS  Google Scholar 

  130. Vollet, D.R., Scalari, J.P., Donatti, D.A., Ruiz, A.I.: A thermoporometry and small-angle X-ray scattering study of wet silica sonogels as the pore volume fraction is varied. J. Phys. Condens. Matter. 20, 025225 (2008)

    Google Scholar 

  131. Phalippou, J., Ayral, A., Woignier, T., Quinson, J.F., Pauthe, M., Chatelut, M.: Fractal geometry of silica alcogels from thermoporometry experiments. Europhys. Lett. 14, 249–254 (1991)

    CAS  Google Scholar 

  132. Scherer, G.W.: Freezing gels. J. Non-Cryst. Solids. 155, 1–25 (1993)

    CAS  Google Scholar 

  133. Beurroies, I., Bourret, D., Sempere, R., Duffours, L., Phalippou, J.: Gas-permeability of partially densified aerogels. J. Non-Cryst. Solids. 186, 328–333 (1995)

    CAS  Google Scholar 

  134. Calas, S., Sempere, R.: Textural properties of densified aerogels. J. Non-Cryst. Solids. 225, 215–219 (1998)

    CAS  Google Scholar 

  135. Kong, F.M., Lemay, J.D., Hulsey, S.S., Alviso, C.T., Pekala, R.W.: Gas-permeability of carbon aerogels. J. Mater. Res. 8, 3100–3105 (1993)

    CAS  Google Scholar 

  136. Hasmy, A., Beurroies, I., Bourret, D., Jullien, R.: Gas-transport in porous-media – simulations and experiments on partially densified aerogels. Europhys. Lett. 29, 567–572 (1995)

    CAS  Google Scholar 

  137. Reichenauer, G., Fella, H.J., Fricke, J.: Monitoring fast pressure changes in gas transport and sorption analysis. Stud. Surf. Sci. Catal. 144, 443–449 (2002)

    CAS  Google Scholar 

  138. Reichenauer, G., Fricke, J.: Gas transport in sol-gel derived porous carbon aerogels. In: Proceedings of the Fall Meeting of the Material Research Society, pp. 345–350 (1996)

    Google Scholar 

  139. Gross, J., Scherer, G.W.: Dynamic pressurization: novel method for measuring fluid permeability. J. Non-Cryst. Solids. 325, 34–47 (2003)

    CAS  Google Scholar 

  140. Reichenauer, G., Heinemann, U., Ebert, H.P.: Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Coll. Surf. A Physicochem. Eng. Aspects. 300, 204–210 (2007)

    CAS  Google Scholar 

  141. Swimm, K., Reichenauer, G., Vidi, S., Ebert, H.P.: Impact of thermal coupling effects on the effective thermal conductivity of aerogels. J. Sol-Gel Sci. Technol. 84, 466–474 (2017)

    CAS  Google Scholar 

  142. Swimm, K., Vidi, S., Reichenauer, G., Ebert, H.P.: Coupling of gaseous and solid thermal conduction in porous solids. J. Non-Cryst. Solids. 456, 114–124 (2017)

    CAS  Google Scholar 

  143. Zaleski, R.: Principles of positron porosimetry. Nukleonika. 60, 795–800 (2015)

    CAS  Google Scholar 

  144. Misheva, M., Djourelov, N., Margaca, F.M.A., Salvado, I.M.M.: Positronium decay study of zirconia-silica sol-gels. J. Non-Cryst. Solids. 272, 209–217 (2000)

    CAS  Google Scholar 

  145. Uhlig, H., Adouane, G., Bluhm, C., Zieger, S., Krause-Rehberg, R., Enke, D.: Positron-annihilation-lifetime-spectroscopy (Pals) for the characterization of bimodal silica-gel synthesized by pseudomorphic transformation. J. Porous. Mater. 23, 139–144 (2016)

    Google Scholar 

  146. Zaleski, R., Kierys, A., Dziadosz, M., Goworek, J., Halasz, I.: Positron annihilation and N-2 adsorption for nanopore determination in silica-polymer composites. RSC Adv. 2, 3729–3734 (2012)

    CAS  Google Scholar 

  147. Ahmed, E.M.H.S.: Characterization of Control Mesoporous Glasses (Cpgs) Using Positron Annihilation Lifetime Spectroscopy (Pals). PhD Thesis (Martin Luther University Halle-Wittenberg, 2001)

    Google Scholar 

  148. Mincov, I., Petkov, M.P., Tsou, P., Troev, T.: Porosity characterization of aerogels using positron annihilation lifetime spectroscopy. J. Non-Cryst. Solids. 350, 253–258 (2004)

    CAS  Google Scholar 

  149. Scherer, G.W.: Bending of gel beams: effect of deflection rate and hertzian indentation. J. Non-Cryst. Solids. 201, 1–25 (1996)

    CAS  Google Scholar 

  150. Gross, J., Scherer, G.W., Alviso, C.T., Pekala, R.W.: Elastic properties of crosslinked resorcinol-formaldehyde gels and aerogels. J. Non-Cryst. Solids. 211, 132–142 (1997)

    CAS  Google Scholar 

  151. Behr, W., Behr, V.C., Reichenauer, G.: Self diffusion coefficients of organic solvents and their binary mixtures with Co2 in silica alcogels at pressures up to 6 Mpa derived by Nmr pulsed gradient spin echo. J. Supercrit. Fluids. 106, 50–56 (2015)

    CAS  Google Scholar 

  152. Behr, W.: Nmr-Bildgebung an Silica Alkogelen Bei Drücken Bis Zu 10 Mpa, Dissertation, Doktorarbeit Doktor Thesis (Physikalisches Institut der Universität Würzburg, Julius-Maximilians-Universität Würzburg, Würzburg 1999)

    Google Scholar 

  153. Behr, W., Haase, A., Reichenauer, G., Fricke, J.: Self and transport diffusion of fluids in Sio2 alcogels studied by Nmr pulsed gradient spin echo and Nmr imaging. J. Non-Cryst. Solids. 225, 91–95 (1998)

    CAS  Google Scholar 

  154. Behr, W., Haase, A., Reichenauer, G., Fricke, J.: High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 Mpa. Rev. Sci. Instrum. 70, 2448–2453 (1999)

    CAS  Google Scholar 

  155. Arenillas, A., Menendez, J. A., Reichenauer, G., Celzard, A., Fierro, V., Hodar, F. J. M., Bailón-Garcia, E., Job, N.: Organic and carbon gels. Springer International Publishing: Cham (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Reichenauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichenauer, G. (2023). Structural Characterization of Aerogels. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_7

Download citation

Publish with us

Policies and ethics