Improving Lesion Segmentation for Diabetic Retinopathy Using Adversarial Learning

  • Qiqi Xiao
  • Jiaxu Zou
  • Muqiao Yang
  • Alex Gaudio
  • Kris Kitani
  • Asim SmailagicEmail author
  • Pedro Costa
  • Min Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11663)


Diabetic Retinopathy (DR) is a leading cause of blindness in working age adults. DR lesions can be challenging to identify in fundus images, and automatic DR detection systems can offer strong clinical value. Of the publicly available labeled datasets for DR, the Indian Diabetic Retinopathy Image Dataset (IDRiD) presents retinal fundus images with pixel-level annotations of four distinct lesions: microaneurysms, hemorrhages, soft exudates and hard exudates. We utilize the HEDNet edge detector to solve a semantic segmentation task on this dataset, and then propose an end-to-end system for pixel-level segmentation of DR lesions by incorporating HEDNet into a Conditional Generative Adversarial Network (cGAN). We design a loss function that adds adversarial loss to segmentation loss. Our experiments show that the addition of the adversarial loss improves the lesion segmentation performance over the baseline.


Conditional generative adversarial networks Deep learning Segmentation Medical image analysis 


  1. 1.
    Decenciére, E., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2004). Scholar
  2. 2.
    Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Michael Fitzpatrick, J., Sonka, M. (eds.) SPIE Medical Imaging. SPIE, vol. 5370, pp. 648–656 (2004)Google Scholar
  3. 3.
    Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003)CrossRefGoogle Scholar
  4. 4.
    Kauppi, T., et al.: DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the 11th Conference on Medical Image Understanding and Analysis (2007)Google Scholar
  5. 5.
    Indian Diabetic Retinopathy Image Dataset. Accessed 14 Mar 2019
  6. 6.
    Quellec, G., Charriére, K., Boudi, Y., Cochener, B., Lamard, M.: Deep image mining for diabetic retinopathy screening. Med. Image Anal. 39, 178–193 (2017)CrossRefGoogle Scholar
  7. 7.
    Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)Google Scholar
  8. 8.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 (2015)Google Scholar
  9. 9.
    Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). Scholar
  10. 10.
    Lachinov, D., Vasiliev, E., Turlapov, V.: Glioma segmentation with cascaded UNet. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 189–198. Springer, Cham (2019). Scholar
  11. 11.
    Li, X., Chen, H., Qi, X., Dou, Q., Fu, C., Heng, P.: H-DenseUNet: hybrid densely connected unet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37, 2663–2674 (2018)CrossRefGoogle Scholar
  12. 12.
    Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016) CrossRefGoogle Scholar
  13. 13.
    Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  15. 15.
    Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. arXiv:1611.08408 (2016)
  16. 16.
    Hung, W.C., Tsai, Y.H., Liou, Y.T., Lin, Y.Y., Yang, M.H.: Adversarial learning for semi-supervised semantic segmentation. arXiv preprint arXiv:1802.07934 (2018)
  17. 17.
    Ghafoorian, M., et al.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. 7(1), 5110 (2017)CrossRefGoogle Scholar
  18. 18.
    Setio, A., et al.: Pulmonary nodule detection in ct images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016) CrossRefGoogle Scholar
  19. 19.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  20. 20.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  21. 21.
    Costa, P., et al.: Eyewes: weakly supervised pre-trained convolutional neural networks for diabetic retinopathy detection (2018)Google Scholar
  22. 22.
    Huo, Y., et al.: Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. In: Medical Imaging 2018: Image Processing, vol. 10574. International Society for Optics and Photonics (2018)Google Scholar
  23. 23.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  24. 24.
    Reza, A.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)CrossRefGoogle Scholar
  25. 25.
    Buades, A., Coll, B., Morel, J.: Non-local means denoising. Image Process. Line 1, 208–212 (2011)zbMATHGoogle Scholar
  26. 26.
    Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)Google Scholar
  27. 27.
    Isola, P., Zhu, J., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.INESC TECPortoPortugal

Personalised recommendations