Skip to main content

The Feathers of the Jurassic Urvogel Archaeopteryx

  • Chapter
  • First Online:
The Evolution of Feathers

Abstract

The Jurassic stem bird Archaeopteryx is an iconic transitional fossil, with an intermediate morphology combining features of non-avian dinosaurs and crown Aves. Importantly, fossils of Archaeopteryx preserve not only the bones but also details of the plumage and therefore help shed light on the evolution of feathers, wings, and avian flight. Plumage is preserved in multiple individuals, allowing a detailed documentation of the feathers of the wings, tail, hindlimbs, and body. In some features, Archaeopteryx’ plumage is remarkably modern, yet in others, it is strikingly primitive. As in extant birds, remiges and coverts are enlarged and overlap to form airfoils. Remiges and rectrices exhibit asymmetrical, pennaceous vanes, with interlocking barbules. The hindlimbs bear large, vaned feathers as in Microraptor and Anchiornis. Rectrices are numerous and extend the full length of the tail to the hips. The plumage of crown Aves was assembled in a stepwise fashion from Anchiornis through Archaeopteryx, culminating in a modern arrangement in ornithothoracines. Subsequent stasis in feather and wing morphology likely reflects aerodynamic and developmental constraints. Feather morphology and arrangement in Archaeopteryx are consistent with lift-generating function, and the wing loading and aspect ratio are comparable to modern birds, consistent with gliding and perhaps flapping flight. The plumage of Archaeopteryx is intermediate between Anchiornis and more derived Pygostylia, suggesting a degree of flight ability intermediate between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbour VM, Burns ME, Bell PR, Currie PJ (2014) Epidermal and dermal integumentary structures of ankylosaurian dinosaurs. J Morphol 275:39–50

    Article  PubMed  Google Scholar 

  • Arratia G, Schultze H-P, Tischlinger H, Viohl G (2015) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Bell PR (2014) A review of hadrosaurid skin impressions. In: Eberth DA, Evans DC (eds) Hadrosaurs. Indiana University Press, Bloomington, IN, pp 572–590

    Google Scholar 

  • Bergman G (1982) Why are the wings Larus fuscus so dark? Ornis Fenn 59:77–83

    Google Scholar 

  • Bergmann U, Morton R, Manning P, Sellers W, Farrar S, Huntley K, Wogelius R, Larson P (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107:9060–9065

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleiweiss R (1987) Development and evolution of avian racket plumes: fine structure and serial homology of the wire. J Morphol 194:23–39

    Article  PubMed  Google Scholar 

  • Brinckmann A (1958) Die Morphologie der Schmuckfeder von Aix galericulata L. Rev Suisse Zool 68:485–608

    Article  Google Scholar 

  • Carney RM, Vinther J, Shawkey MD, D’Alba L, Ackermann J (2012) New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 3:637

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong C-M (2009) Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int J Dev Biol 53:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Templin RJ (2003) The flight of Archaeopteryx. Naturwissenschaften 90:27–32

    Article  CAS  PubMed  Google Scholar 

  • Chiappe LM, Coria RA, Dingus L, Jackson F, Chinsamy A, Fox M (1998) Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396:258–261

    Article  CAS  Google Scholar 

  • Chiappe LM, Ji S-A, Ji Q, Norell MA (1999) Anatomy and systematics of Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China. Bull Am Mus Nat Hist 242:1–89

    Google Scholar 

  • Christiansen P, Bonde N (2004) Body plumage in Archaeopteryx: a review, and new evidence from the Berlin specimen. C R Palevol 3:99–118

    Article  Google Scholar 

  • Christiansen NA, Tschopp E (2010) Exceptional stegosaur integument impressions from the Upper Jurassic Morrison Formation of Wyoming. Swiss J Geosci 103:163–171

    Article  Google Scholar 

  • Currie PJ, Chen P-J (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can J Earth Sci 38:1705–1727

    Article  Google Scholar 

  • Czerkas SJ, Zhang D, Li J, Li Y (2002) Flying dromaeosaurs. Dinosaur Museum J 1:98–126

    Google Scholar 

  • Dames W (1884) Über Archaeopteryx. Palaeontologische Abhandlungen 2:119–196

    Google Scholar 

  • Darwin CR (1859) The origin of species. John Murray, London

    Google Scholar 

  • de Buisonjé PH (1985) Climatological conditions during deposition of the Solnhofen limestones. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 45–65

    Google Scholar 

  • Dial KP (2003) Wing-assisted incline running and the evolution of flight. Science 299:402–404

    Article  CAS  PubMed  Google Scholar 

  • Eagle RA, Tütken T, Martin TS, Tripati AK, Fricke HC, Connely M, Cifelli RL, Eiler JM (2011) Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science 333:443–445

    Article  CAS  PubMed  Google Scholar 

  • Elzanowski A (2002) Archaeopterygidae (Upper Jurassic of Germany). In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, CA, pp 129–159

    Google Scholar 

  • Erickson GM, Rogers KC, Yerby SA (2001) Dinosaurian growth patterns and rapid avian growth rates. Nature 412:429–433

    Article  CAS  PubMed  Google Scholar 

  • Erickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, Brochu CA (2004) Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430:772–775

    Article  CAS  PubMed  Google Scholar 

  • Feduccia A (1996) The origin and evolution of birds. Yale University Press, New Haven, CT

    Google Scholar 

  • Feduccia A, Czerkas SA (2015) Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs. J Ornithol 156:1067–1074

    Article  Google Scholar 

  • Feduccia A, Tordoff HB (1979) Feathers of Archaeopteryx: asymmetric vanes indicate aerodynamic function. Science 203:1021–1022

    Article  CAS  PubMed  Google Scholar 

  • Feo TJ, Field DJ, Prum RO (2015) Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc R Soc Lond B Biol Sci 282:20142864

    Google Scholar 

  • Foth C (2012) On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontol Z 86:91–102

    Article  Google Scholar 

  • Foth C, Rauhut OWM (2017) Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol Biol 17:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82

    Article  CAS  PubMed  Google Scholar 

  • Gatesy SM, Dial KP (1996) From frond to fan: Archaeopteryx and the evolution of short-tailed birds. Evolution 50:2037–2048

    Article  PubMed  Google Scholar 

  • Gauthier J (1986) Saurischian monophyly and the origin of birds. Memoirs Calif Acad Sci 8:1–55

    Google Scholar 

  • Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH Jr, Grubb T Jr (2004) Bacterial degradation of black and white feathers. Auk 121:656–659

    Article  Google Scholar 

  • Griffiths PJ (1996) The isolated Archaeopteryx feather. Archaeopteryx 14:1–26

    Google Scholar 

  • Grigg G, Kirshner D (2015) Biology and evolution of crocodylians. Cornell University Press, Ithaca, NY

    Book  Google Scholar 

  • Gunderson AR, Frame AM, Swaddle JP, Forsyth MH (2008) Resistance of melanized feathers to bacterial degradation: is it really so black and white? J Avian Biol 39:539–545

    Article  Google Scholar 

  • Han G, Chiappe LM, Ji S-A, Habib M, Turner AH, Chinsamy A, Liu X, Han L (2014) A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat Commun 5:4382

    Article  CAS  PubMed  Google Scholar 

  • Heilmann G (1926) The origin of birds. Witherby, London

    Google Scholar 

  • Heinroth O (1923) Die Flügel von Archaeopteryx. J Ornithol 71:277–283

    Article  Google Scholar 

  • Helms J (1982) Zur Fossilization der Federn des Urvogels (Berliner Exemplar). Wissenschaftliche Zeitschrift der Humboldt-Universität, mathematisch-naturwissenschaftliche Reihe 31:185–199

    Google Scholar 

  • Homberger DG, de Silva KN (2000) Functional microanatomy of the feather-bearing integument: implication for the evolution of birds and avian flight. Am Zool 40:553–574

    Google Scholar 

  • Hu D, Hou L-H, Zhang L, Xu X (2009) A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643

    Article  CAS  PubMed  Google Scholar 

  • Huxley TH (1868) On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist 2:66–75

    Google Scholar 

  • Huxley TH (1870) Further evidence of the affinity between the dinosaurian reptiles and birds. Q J Geol Soc 26:12–31

    Article  Google Scholar 

  • Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761

    Article  CAS  Google Scholar 

  • Li Q, Gao K, Vinther J, Shawkey MD, Clarke JA, D’Alba L, Meng Q, Briggs DEG, Prum RO (2010) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Gao K, Meng Q, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J (2012) Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–1219

    Article  CAS  PubMed  Google Scholar 

  • Livezey BC (2003) Evolution of flightlessness in rails (Gruiformes, Rallidae). Ornithol Monogr 53:1–654

    Google Scholar 

  • Longrich N (2006) Structure and function of hindlimb feathers in Archaeopteryx lithographica. Paleobiology 32:417–431

    Article  Google Scholar 

  • Longrich NR, Vinther J, Meng Q, Li Q, Russell AP (2012) Origins and evolution of the avian wing: new evidence from Archaeopteryx lithographica and Anchiornis huxleyi. Curr Biol 22:1–6

    Article  CAS  Google Scholar 

  • Lucas AM, Stettenheim PR (1972) Avian anatomy: integument, vol 2. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Lüdicke M (1974) Radioaktive Markierungsversuche an Federn von Casuarius casuarius. J Ornithol 115:348–364

    Article  Google Scholar 

  • Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE, Larson PL, Schwarz-Wings D, Egerton VM, Sokaras D, Mori RA (2013) Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J Anal At Spectrom 28:1024–1030

    Article  CAS  Google Scholar 

  • Martin LD, Lim J-D (2005) Soft body impression of the hand in Archaeopteryx. Curr Sci 89:1089–1090

    Google Scholar 

  • Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Mayr G, Pohl B, Hartmann S, Peters DS (2007) The tenth skeletal specimen of Archaeopteryx. Zool J Linnean Soc 149:97–116

    Article  Google Scholar 

  • McGowan C (1989) Feather structure in flightless birds and its bearing on the question of the origin of feathers. J Zool 218:537–547

    Article  Google Scholar 

  • Meseguer J, Chiappe LM, Sanz JL, Ortega F, Sanz-Andrés A, Pérez-Grande I, Franchini S (2012) Lift devices in the flight of Archaeopteryx. Spanish Journal of Palaeontology 27:125–130

    Google Scholar 

  • Meyer HV (1862) Archaeopteryx lithographica aus dem lithographischen Schiefer von Solenhofen. Palaeontographica:53–56

    Google Scholar 

  • Moyer AE, Zheng W, Johnson EA, Lamanna MC, Li D-Q, Lacovara KJ, Schweitzer MH (2014) Melanosomes or microbes: testing an alternative hypothesis for the origin of microbodies in fossil feathers. Sci Rep 4:4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachtigall W, Kempf B (1971) Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 71:326–341

    Google Scholar 

  • Norberg UM (1985a) Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. Am Nat 126:303–327

    Article  Google Scholar 

  • Norberg RA (1985b) Function of vane asymmetry and shaft curvature in bird flight feathers: inferences on flight ability of Archaeopteryx. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 303–318

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Book  Google Scholar 

  • Norberg RA (1995) Feather asymmetry in Archaeopteryx. Nature 374:221

    Article  CAS  Google Scholar 

  • Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299

    Article  CAS  Google Scholar 

  • Norell MA, Clark JM, Weintraub R, Chiappe LM, Demberelyin D (1995) A nesting dinosaur. Nature 278:247–248

    Google Scholar 

  • Norell MA, Ji Q, Gao K, Yuan C, Zhao Y, Wang L (2002) ‘Modern’ feathers on a non-avian dinosaur. Nature 416:36–37

    Article  CAS  PubMed  Google Scholar 

  • Nudds RL, Dyke GJ (2010) Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887–889

    Article  CAS  PubMed  Google Scholar 

  • Olson S, Feduccia A (1979) Flight capability and the pectoral girdle of Archaeopteryx. Nature 278:247–248

    Article  Google Scholar 

  • Ostrom JH (1973) The ancestry of birds. Nature 242:136

    Article  Google Scholar 

  • Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linn Soc 8:91–182

    Article  Google Scholar 

  • Ostrom JH (1979) Bird flight: how did it begin? Am Sci 67:46–56

    CAS  PubMed  Google Scholar 

  • Owen R (1863) On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos Trans R Soc Lond 153:33–47

    Google Scholar 

  • Paul GS (2002) Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds. The John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Pei R, Li Q, Meng Q, Gao K-Q, Norell MA (2014) A new specimen of Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of western Liaoning, China. Am Mus Novit 3821:1–28

    Article  Google Scholar 

  • Pei R, Li Q, Meng Q, Norell MA, Gao K (2017) New Specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Middle-Late Jurassic of northeastern China. Bull Am Mus Nat Hist 411:1–66

    Article  Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Oakland

    Google Scholar 

  • Prum RO (2003) Dinosaurs take to the air. Nature 421:323–324

    Article  CAS  PubMed  Google Scholar 

  • Rauhut OWM, Foth C, Tischlinger H (2018) The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6:e4191

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauhut OWM, Tischlinger H, Foth C (2019) A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8:e43789

    Google Scholar 

  • Rayner JMV (2001) On the origin and evolution of flapping flight aerodynamics in birds. In: Gauthier J, Gall LF (eds) New perspectives on the origin and early evolution of birds: proceedings of the international conference in honor of John H. Ostrom. Peabody Museum of Natural History, New Haven, CT, pp 364–381

    Google Scholar 

  • Rietschel S (1985) Feathers and wings of Archaeopteryx and the question of her flight ability. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 251–260

    Google Scholar 

  • Sanz JL, Chiappe LM, Pérez-Moreno BP, Buscalioni AD, Moratalla JJ, Ortega F, Poyato-Ariza FJ (1996) An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature 382:442–445

    Article  CAS  Google Scholar 

  • Speakman JR, Thompson SC (1994) Flight capabilities of Archaeopteryx. Nature 370:514

    Article  Google Scholar 

  • Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc Lond B Biol Sci 278:2098–2104

    Article  Google Scholar 

  • Steiner H (1962) Befunde am dritten Exemplar des Urvogels Archaeopteryx. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 107:197–210

    Google Scholar 

  • Stephan B (1985) Remarks on reconstruction of Archaeopteryx wing. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 261–265

    Google Scholar 

  • Stephan B (1987) Urvögel: Archaeopterygiformes. Ziemsen, Wittenberg

    Google Scholar 

  • Sullivan C, Wang Y, Hone DW, Wang Y, Xu X, Zhang F (2014) The vertebrates of the Jurassic Daohugou Biota of northeastern China. J Vertebr Paleontol 34:243–280

    Article  Google Scholar 

  • Tischlinger H (2005) Neue Informationen zum Berliner Exemplar von Archaeopteryx lithographica H. v. Meyer 1861. Archaeopteryx 23:33–50

    Google Scholar 

  • Tischlinger H (2009) Der achte Archaeopteryx–das Daitinger Exemplar. Archaeopteryx 27:1–20

    Google Scholar 

  • Tischlinger H, Unwin D (2004) UV-Untersuchungen des Berliner Exemplars von Archaeopteryx lithographica H. v. Meyer 1861 und der isolierten Archaeopteryx-Feder. Archaeopteryx 22:17–50

    Google Scholar 

  • Vinther J, Nicholls R, Lautenschlager S, Pittman M, Kaye TG, Rayfield E, Mayr G, Cuthill IC (2016) 3D camouflage in an ornithischian dinosaur. Curr Biol 26:2456–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viohl G (1985) Geology of the Solnhofen lithographic limestone and the Habitat of Archaeopteryx. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 31–44

    Google Scholar 

  • Voeten DFAE, Cubo J, de Margerie E, Röper M, Beyrand V, Bureš S, Taffereau P, Sanchez S (2018) Wing bone geometry reveals active flight in Archaeopteryx. Nat Commun 9:923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Nudds RL, Palmer C, Dyke GJ (2017a) Primary feather vane asymmetry should not be used to predict the flight capabilities of feathered fossils. Science Buelltin 62:1227–1228

    Article  Google Scholar 

  • Wang X, Pittman M, Zheng X, Kaye TG, Falk AR, Hartman SA, Xu X (2017b) Basal paravian functional anatomy illuminated by high-detail body outline. Nat Commun 8:14576

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellnhofer P (2004) The plumage of Archaeopteryx: feathers of a dinosaur? In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds) Feathered dragons: studies on the transition from dinosaurs to birds. Indiana University Press, Bloomington, pp 282–300

    Google Scholar 

  • Wellnhofer P (2009) Archaeopteryx: the icon of evolution. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Wogelius R, Manning P, Barden H, Edwards N, Webb S, Sellers W, Taylor K, Larson P, Dodson P, You H (2011) Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333:1622–1626

    Article  CAS  PubMed  Google Scholar 

  • Xing L, McKellar RC, Wang M, Bai M, O’Connor JK, Benton MJ, Zhang J, Wang Y, Tseng K, Lockley MG, Li G, Zhang W, Xu X (2016) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 7:12089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li F (2016) A new microraptorine specimen (Theropoda: Dromaeosauridae) with a brief comment on the evolution of compound bones in theropods. Vertebrata PalAsiatica 54:269–285

    Google Scholar 

  • Xu X, Norell MA (2004) A new troodontid dinosaur from China with an avian-like sleeping posture. Nature 431:838–841

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four winged dinosaurs from China. Nature 421:335–340

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484:92–95

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Sullivan C, Wang Y, Ren D (2016) An updated review of the Middle-Late Jurassic Yanliao Biota: Chronology, Taphonomy, Paleontology and Paleoecology. Acta Geologica Sinica (English Edition) 90:2229–2243

    Article  Google Scholar 

  • Xu X, Currie P, Pittman M, Xing L, Meng Q, Lü J, Hu D, Yu C (2017) Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat Commun 8:14972

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhou Z (2004) Leg feathers in an Early Cretaceous bird. Nature 341:925

    Article  CAS  Google Scholar 

  • Zhang F, Zhou Z, Dyke G (2006) Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404

    Article  Google Scholar 

  • Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X (2013) Hind wings in basal birds and the evolution of leg feathers. Science 339:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang F (2003a) Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften 90:220–225

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang F (2003b) Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci 40:731–747

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the curators and staff of the Natural History Museum (London), Humboldt Museum für Naturkunde (Berlin), Jura-Museum (Eichstätt), and Wyoming Dinosaur Center (Thermopolis), especially Raimund Albersdörfer, Martina Köbl-Ebert, Daniela Schwarz, and Burkhard Pohl for access to the specimens in their care, without which this study would not be possible. NRL is grateful to Tony Russell for his patience as a supervisor and mentor and many discussions and also to Philip J. Currie for the discussions. We further thank Jakob Vinther, Oliver Rauhut, and Xu Xing for the discussion and Tom Holtz for his comments on the manuscript. CF is supported by the Swiss National Science Foundation under grant PZ00P2_174040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Longrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longrich, N.R., Tischlinger, H., Foth, C. (2020). The Feathers of the Jurassic Urvogel Archaeopteryx . In: Foth, C., Rauhut, O. (eds) The Evolution of Feathers. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-27223-4_8

Download citation

Publish with us

Policies and ethics