Advertisement

Two of a Feather: A Comparison of the Preserved Integument in the Juvenile Theropod Dinosaurs Sciurumimus and Juravenator from the Kimmeridgian Torleite Formation of Southern Germany

Chapter
Part of the Fascinating Life Sciences book series (FLS)

Abstract

The discoveries of numerous theropod dinosaurs with filamentous integumentary structures in various stages of morphological complexity from the Upper Jurassic and Lower Cretaceous of China provided striking evidence that birds represent modern predatory dinosaurs and that feathers were originally filamentous. In the shadow of these impressive discoveries, two early juvenile theropod dinosaurs from the Upper Jurassic limestones of Bavaria (Germany), Juravenator starki and Sciurumimus albersdoerferi, were described. Both are preserved with phosphatized soft tissues, including skin and feathers. In the current study, the integumentary structures of both theropods are investigated and revised with the help of autofluorescence methods, using two different excitation wavelengths (UVA and cyan). Both theropods possessed monofilamentous feathers and scaleless skin. In J. starki, short feathers could only be traced in the tail region. The tubercle-like structures, originally described as scales, found in the anterior tail region of J. starki, show no autofluorescence signal and were reinterpreted as remains of adipocere, maybe indicating the presence of a fat body. S. albersdoerferi was probably entirely plumaged, possessing a filamentous crest on the dorsal edge in the anterior tail section. This current example emphasizes the importance of taphonomic reviews for the interpretation of integumentary structures. Furthermore, the new data give new insights into the early evolution of feathers. However, the placement of J. starki in multiple phylogenetic positions and differences in the morphological interpretation of filamentous feathers found in basal coelurosaurs produce contrasting reconstructions of character evolution that will need to be resolved in due course if greater clarity is to be obtained in this area.

Keywords

Theropoda Integumentary structures Taphonomy Feather evolution 

Notes

Acknowledgements

We thank Raimund Albersdörfer and Martina Köbl-Ebert for access to the two specimens and Michael Pittman for critical discussion and reviewing the manuscript. This work was supported by the Volkswagen Foundation under grant I/84 640 (to OR), the Deutsche Forschungsgemeinschaft under grant (FO 1005/2-1) and the Swiss National Science Foundation under grant PZ00P2_174040 (both to CF).

References

  1. Albersdörfer R, Häckel W (2015) Die Kieselplattenkalke von Painten. In: Arratia G, Schultze H-P, Tischlinger H, Viohl G (eds) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München, pp 126–133Google Scholar
  2. Alibardi L, Thompson MB (2000) Scale morphogenesis and ultrastructure of dermis during embryonic development in the alligator (Alligator mississippiensis, Crocodilia, Reptilia). Acta Zool (Stockholm) 81:325–338CrossRefGoogle Scholar
  3. Alibardi L, Thompson MB (2001) Fine structure of the developing epidermis in the embryo of the American alligator (Alligator mississippiensis, Crocodilia, Reptilia). J Anat 198:265–282Google Scholar
  4. Alibardi L, Thompson MB (2002) Keratinization and ultrastructure of the epidermis of late embryonic stages in the alligator (Alligator mississippiensis). J Anat 201:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allain R (2002) Discovery of megalosaur (Dinosauria, Theropoda) in the middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. J Vertebr Paleontol 22:548–563CrossRefGoogle Scholar
  6. Araújo R, Castanhinha R, Martins R, Mateus O, Hendrickx C, Beckmann F, Schell N, Alves L (2013) Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal. Sci Rep 3:1924CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barrett PM, Evans DC, Campione NE (2015) Evolution of dinosaur epidermal structures. Biol Lett 11:20150229CrossRefPubMedPubMedCentralGoogle Scholar
  8. Becker R (1959) Die Strukturanalyse der Gefiederfolge von Megapodius feyc. reinw. und ihre Beziehungen zu der Nestlingsdune der Hühnervögel. Rev Suisse Zool 66:411–527CrossRefGoogle Scholar
  9. Bell PR (2012) Standardized terminology and potential taxonomic utility for hadrosaurid skin impressions: a case study for Saurolophus from Canada and Mongolia. PLoS One 7:e31295CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bell PR (2014) A review of hadrosaurid skin impressions. In: Eberth DA, Evans DC (eds) Hadrosaurs. Indiana University Press, Bloomington, pp 572–590Google Scholar
  11. Benton MJ, Zhou Z, Orr PJ, Zhang F, Kearns SL (2008) The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge of Mesozoic life. Proc Geol Assoc 119:209–228CrossRefGoogle Scholar
  12. Bergmann U, Morton RW, Manning PL, Sellers WI, Farrar S, Huntley KG, Wogelius RA, Larson PL (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107:9060–9065CrossRefPubMedGoogle Scholar
  13. Berner RA (1968) Calcium carbonate concretions formed by the decomposition of organic matter. Science 159:195–197CrossRefPubMedGoogle Scholar
  14. Bonaparte JF, Novas FE, Coria RA (1990) Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contrib Sci 416:1–42Google Scholar
  15. Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci 31:275–301CrossRefGoogle Scholar
  16. Briggs DEG, Kear AJ (1993) Fossilization of soft tissue in the laboratory. Science 259:1439–1442CrossRefGoogle Scholar
  17. Briggs DEG, Kear AJ (1994) Decay and mineralization of shrimps. PALAIOS 9:431–456CrossRefGoogle Scholar
  18. Briggs DEG, Wilby PR (1996) The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. J Geol Soc Lond 153:665–668CrossRefGoogle Scholar
  19. Briggs DEG, Kear AJ, Martill DM, Wilby PR (1993) Phosphatization of soft-tissue in experiments and fossils. J Geol Soc Lond 150:1035–1038CrossRefGoogle Scholar
  20. Britt B (1991) Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, with emphasis on the osteology of Torvosaurus tanneri. BYU Geol Stud 37:1–72Google Scholar
  21. Brusatte SL, Nesbitt SJ, Irmis RB, Butler RJ, Benton MJ, Norell MA (2010) The origin and early radiation of dinosaurs. Earth Sci Rev 101:68–100CrossRefGoogle Scholar
  22. Brusatte SL, Lloyd GT, Wang SC, Norell MA (2014) Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol 24:2386–2392CrossRefPubMedGoogle Scholar
  23. Butler RJ, Upchurch P (2007) Highly incomplete taxa and the phylogenetic relationships of the theropod dinosaur Juravenator starki. J Vertebr Paleontol 27:253–256CrossRefGoogle Scholar
  24. Carney RM, Vinther J, Shawkey MD, D’Alba L, Ackermann J (2012) New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 3:637Google Scholar
  25. Chiappe LM, Göhlich UB (2010) Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany. Neues Jahrb Geol Palaontol Abh 258:257–296CrossRefGoogle Scholar
  26. Chin K, Eberth DA, Schweitzer MH, Rando TA, Sloboda WJ, Horner JR (2003) Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. PALAIOS 18:286–294CrossRefPubMedGoogle Scholar
  27. Choiniere JN, Clark JM, Forster CA, Norell MA, Eberth DA, Erickson GM, Chu H, Xu X (2014) A juvenile specimen of a new coelurosaur (Dinosauria: Theropoda) from the Middle–Late Jurassic Shishugou Formation of Xinjiang, People’s Republic of China. J Syst Palaeontol 12:177–215Google Scholar
  28. Christiansen NA, Tschopp E (2010) Exceptional stegosaur integument impressions from the Upper Jurassic Morrison Formation of Wyoming. Swiss J Geosci 103:163–171CrossRefGoogle Scholar
  29. Colbert EH (1989) The Triassic dinosaur Coelophysis. Mus North Ariz Bull 57:1–160Google Scholar
  30. Coria RA, Chiappe LM (2007) Embryonic skin from Late Cretaceous sauropods (Dinosauria) of Auca Mahuevo, Patagonia, Argentina. J Paleontol 81:1528–1532CrossRefGoogle Scholar
  31. Cuesta E, Díaz-Martínez I, Ortega F, Sanz JL (2015) Did all theropods have chicken-like feet? First evidence of a non-avian dinosaur podotheca. Cretac Res 56:53–59CrossRefGoogle Scholar
  32. Currie PJ, Chen P (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can J Earth Sci 38:1705–1727CrossRefGoogle Scholar
  33. Currie PJ, Badamgarav D, Koppelhus EB (2003) The first Late Cretaceous footprints from the Nemegt locality in the Gobi of Mongolia. Ichnos 10:1–13CrossRefGoogle Scholar
  34. Czerkas SA (1997) Skin. In: Currie PJ, Padian K (eds) Encyclopedia of dinosaurs. Academic, San Diego, CA, pp 669–675Google Scholar
  35. Dal Sasso C, Maganuco S (2011) Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 37:1–281Google Scholar
  36. De Buisonjé PH (1985) Climatological conditions during deposition of the Solnhofen limestones. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 45–65Google Scholar
  37. Dhouailly D, Hardy MH, Sengel P (1980) Formation of feathers on chick foot scales: a stage-dependent morphogenetic response to retinoic acid. J Embryol Exp Morphol 58:63–78PubMedGoogle Scholar
  38. Dumbacher JP, Menon GK, Daly JW (2009) Skin as a toxin storage organ in the endemic New Guinean genus Pitohui. Auk 126:520–530CrossRefGoogle Scholar
  39. Egerton VM, Wogelius RA, Norell MA, Edwards NP, Sellers WI, Bergmann U, Sokaras D et al (2015) The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird. J Anal At Spectrom 30:627–634CrossRefGoogle Scholar
  40. Embry AF, Klovan E (1971) A late Devonian reef tract on northeastern Banks Island, N.W.T. Bull Can Petrol Geol 19:730–781Google Scholar
  41. Field DJ, D’Alba L, Vinther J, Webb SM, Gearty W, Shawkey MD (2013) Melanin concentration gradients in modern and fossil feathers. PLoS One 8:e59451Google Scholar
  42. Forbes SL, Stuart BH, Dent B (2005) The effect of the burial environment on adipocere formation. Forensic Sci Int 154:24–34CrossRefGoogle Scholar
  43. Foth C (2011) The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications. J Morphol 272:387–403CrossRefPubMedPubMedCentralGoogle Scholar
  44. Foth C (2012) On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontol Z 86:91–102CrossRefGoogle Scholar
  45. Foth C (2014) Comment on the absence of ossified sternal elements in basal paravian dinosaurs. Proc Natl Acad Sci USA 111:E5334CrossRefGoogle Scholar
  46. Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82CrossRefPubMedPubMedCentralGoogle Scholar
  47. Foth C, Hedrick BP, Ezcurra MD (2016) Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589CrossRefPubMedPubMedCentralGoogle Scholar
  48. Frey E (1988) Anatomie des Körperstammes von Alligator mississippiensis Daudin. Stuttgarter Beiträge zur Naturkunde, A 424:1–106Google Scholar
  49. Frey E, Martill DM (1998) Soft tissue preservation in a specimen of Pterodactylus kochi (Wagner) from the Upper Jurassic of Germany. Neues Jahrb Geol Palaontol Abh 210:421–441CrossRefGoogle Scholar
  50. Frey E, Tischlinger H (2012) The Late Jurassic pterosaur Rhamphorhynchus, a frequent victim of the ganoid fish Aspidorhynchus? PLoS One 7:e31945Google Scholar
  51. Gatesy SM (2001) Skin impressions of Triassic theropods as records of foot movement. Bull Mus Comp Zool 156:137–149Google Scholar
  52. Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455CrossRefGoogle Scholar
  53. Göhlich UB, Chiappe LM (2006) A new carnivorous dinosaur from the Late Jurassic Solnhofen archipelago. Nature 440:329–332CrossRefGoogle Scholar
  54. Göhlich UB, Tischlinger H, Chiappe LM (2006) Juravenator starki (Reptilia, Theropoda), ein neuer Raubdinosaurier aus dem Oberjura der Südlichen Frankenalb (Süddeutschland): Skelettanatomie und Weichteilbefunde. Archaeopteryx 24:1–26Google Scholar
  55. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefGoogle Scholar
  56. Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool B Mol Dev Evol 294:160–176CrossRefGoogle Scholar
  57. Haug JT, Haug C (2011) Fossilien unter langwelligem Licht: Grün-Orange-Fluoreszenz an makroskopischen Objekten. Archaeopteryx 29:20–23Google Scholar
  58. Haug C, Haug JT, Waloszek D, Maas A, Frattigiani R, Liebau S (2009) New method to document fossils from lithographic limestones of southern Germany and Lebanon. Palaeontol Electron 12:3.6TGoogle Scholar
  59. Haug JT, Haug C, Kutschera V, Mayer G, Maas A, Liebau S, Castellani C, Wolfram U, Clarkson ENK, Waloszek D (2011a) Autofluorescence imaging, an excellent tool for comparative morphology. J Microsc 244:259–272CrossRefGoogle Scholar
  60. Haug JT, Haug C, Waloszek D, Schweigert G (2011b) The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss J Geosci 104:S85–S98CrossRefGoogle Scholar
  61. Hirschler A, Lucas J, Hubert J-C (1990) Bacterial involvement in apatite genesis. FEMS Microbiol Ecol 73:211–220CrossRefGoogle Scholar
  62. Huchzermeyer FW (2003) Crocodiles. CABI, WallingfordGoogle Scholar
  63. Hwang SH, Norell MA, Ji Q, Gao K (2004) A large compsognathid from the Early Cretaceous Yixian Formation of China. J Syst Palaeontol 2:13–30CrossRefGoogle Scholar
  64. Ji Q, Currie PJ, Norell MA, Ji S (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  65. Ji Q, Norell MA, Gao K, Ji S, Ren D (2001) The distribution of integumentary structures in a feathered dinosaur. Nature 410:1084–1088CrossRefGoogle Scholar
  66. Ji S, Ji Q, Lü J, Yuan C (2007) A new giant compsognathid dinosaur with long filamentous integuments from Lower Cretaceous of northeastern China. Acta Geol Sin 81:8–15Google Scholar
  67. Kane R, Sell H (2001) Revolution in lamps: a chronicle of 50 years of progress. The Fairmont Press, LilburnGoogle Scholar
  68. Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA et al (2015) Laser-stimulated fluorescence in paleontology. PLoS One 10:e0125923Google Scholar
  69. Kellner AWA (1996) Fossilized theropod soft tissue. Nature 379:32CrossRefGoogle Scholar
  70. Kellner AWA, Wang X, Tischlinger H, Campos D, Hone D, Meng X (2010) The soft tissue of Jeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane. Proc R Soc B Biol Sci 277:321–329CrossRefGoogle Scholar
  71. Kelsall JP, Calaprice JR (1972) Chemical content of waterfowl plumage as a potential diagnostic tool. J Wildl Manag 36:1088–1097CrossRefGoogle Scholar
  72. Kühn K (1974) Struktur und Biochemie des Kollagens. Chem unserer Zeit 8:97–103CrossRefGoogle Scholar
  73. Kundrát M (2004) When did theropods become feathered? Evidence for pre-Archaeopteryx feathery appendages. J Exp Zool B Mol Dev Evol 302B:355–364CrossRefGoogle Scholar
  74. Li Q, Gao K, Vinther J, Shawkey MD, Clarke JA, D’Alba L, Meng Q, Briggs DEG, Prum RO (2010) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372CrossRefPubMedPubMedCentralGoogle Scholar
  75. Li Q, Gao K, Meng Q, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J (2012) Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–1219CrossRefGoogle Scholar
  76. Li Q, Clarke JA, Gao K, Zhou Z, Meng Q, Li D, D’Alba L, Shawkey MD (2014) Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507:350–353CrossRefGoogle Scholar
  77. Lingham-Soliar T, Wesley-Smith J (2008) First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument. Proc R Soc Lond B 275:2207–2212CrossRefGoogle Scholar
  78. Link E, Fürsich FT (2001) Hochauflösende Feinstratigraphie und Mikrofaziesanalyse der Oberjura Plattenkalke von Painten, Südliche Frankenalb. Archaeopteryx 19:71–88Google Scholar
  79. Liu X, Zhao S, Sun L, Yin X, Xie Z, Luo H, Wang Y (2006) P and trace metal contents in biomaterials, soils, sediments and plants in colony of red-footed booby (Sula sula) in the Dongdao Island of South China Sea. Chemosphere 65:707–715CrossRefPubMedGoogle Scholar
  80. Loewen MA, Irmis RB, Sertich JJW, Currie PJ, Sampson SD (2013) Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS One 8:e79420.  https://doi.org/10.1371/journal.pone.0079420 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lucas AM, Stettenheim PR (1972) Avian anatomy: integument, part I & II. U.S. Government Printing Office, Washington, DCGoogle Scholar
  82. Maisch MW (2015) Fischechsen (Ichthyosauria). In: Arratia G, Schultze HP, Tischlinger H, Viohl G (eds) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München, pp 422–430Google Scholar
  83. Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE, Larson PL, Schwarz-Wings D et al (2013) Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J Anal At Spectrom 28:1024–1030CrossRefGoogle Scholar
  84. Marlow HW, Caldwell MJ (1934) A chemical and X-ray study of “flightless” feathers. J Hered 25:265–268CrossRefGoogle Scholar
  85. Mayr G, Peters DS, Plodowski G, Vogel O (2002) Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus. Naturwissenschaften 89:361–365CrossRefGoogle Scholar
  86. Mayr G, Pittman M, Saitta E, Kaye TG, Vinther J (2016) Structure and homology of Psittacosaurus tail bristles. Palaeontology 59:793–802CrossRefGoogle Scholar
  87. McGraw KJ (2003) Melanins, metals, and mate quality. Oikos 102:402–406CrossRefGoogle Scholar
  88. McNamara ME, Zhang F, Kearns SL, Orr PJ, Toulouse A, Foley T et al (2018) Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. Nat Commun 9:2072Google Scholar
  89. Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362AD:259–265CrossRefGoogle Scholar
  90. Murayama K, Takahashi R, Yokote Y, Akahane K (1986) The primary structure of feather keratins from duck (Anas platyrhynchos) and pigeon (Columba livia). Biochim Biophs Acta 873:6–12CrossRefGoogle Scholar
  91. Niebuhr B, Pürner T (2014) Lithostratigraphie der Weißjura-Gruppe der Frankenalb (außeralpiner Oberjura) und der mittel- bis oberjurassischen Reliktvorkommen zwischen Straubing und Passau (Bayern). Schriftenr Dtsch Ges Geowissenschaften 83:5–72Google Scholar
  92. Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299CrossRefGoogle Scholar
  93. O’Brien TG, Kuehner AC (2007) Waxing grave about adipocere: soft tissue change in an aquatic context. J Forensic Sci 52:294–301CrossRefPubMedGoogle Scholar
  94. Ortega F, Escaso F, Sanz JL (2010) A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. Nature 467:203–206CrossRefGoogle Scholar
  95. Osborn HF (1912) Integument of the iguanodontid dinosaur Trachodon. Mem Am Mus Nat Hist 1:33–54Google Scholar
  96. Peyer K (2006) A reconsideration of Compsognathus from the Upper Tithonian of Canjuers, southeastern France. J Vertebr Paleontol 26:879–896CrossRefGoogle Scholar
  97. Prum RO (1999) Development and evolutionary origin of feathers. J Exp Zool B Mol Dev Evol 285:291–306CrossRefGoogle Scholar
  98. Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295CrossRefGoogle Scholar
  99. Prum RO, Dyck J (2003) A hierarchical model of plumage: morphology, development, and evolution. J Exp Zool B Mol Dev Evol 298B:73–90CrossRefGoogle Scholar
  100. Pu H, Kobayashi Y, Lü J, Xu L, Wu Y, Chang H, Zhang J, Jia S (2013) An unusual basal therizinosaur dinosaur with an ornithischian dental arrangement from northeastern China. PLoS One 8:e63423CrossRefPubMedPubMedCentralGoogle Scholar
  101. Rauhut OWM (2005) Osteology and relationships of a new theropod dinosaur from the Middle Jurassic of Patagonia. Palaeontology 48:87–110CrossRefGoogle Scholar
  102. Rauhut OWM, Fechner R (2005) Early development of the facial region in a non-avian theropod dinosaur. Proc R Soc Lond B 272:1179–1183CrossRefGoogle Scholar
  103. Rauhut OWM, Foth C (2014) New information on the theropod dinosaurs from the Late Jurassic lithographic limestones of southern Germany. J Vertebr Paleontol, Program and Abstracts: 212Google Scholar
  104. Rauhut OWM, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proc Natl Acad Sci USA 109:11746–11751CrossRefPubMedPubMedCentralGoogle Scholar
  105. Reichholf JH (1996) Die Feder, die Mauser und der Ursprung der Vögel. Archaeopteryx 14:27–38Google Scholar
  106. Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: reptiles – the taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodivers Palaeoenviron 92:119–168CrossRefGoogle Scholar
  107. Sadleir RW, Barrett PM, Powell HP (2008) The anatomy and systematics of Eustreptospondylus oxoniensis, a theropod dinosaur from the Middle Jurassic of Oxfordshire, England. Monogr Palaeontol Soc 627:1–82Google Scholar
  108. Saitta E, Gelernter R, Vinther J (2018) Additional information on the primitive contour and wing feathering of paravian dinosaurs. Palaeontology 61:273–288CrossRefGoogle Scholar
  109. Sansom RS, Gabbott SE, Purnell MA (2010) Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463:797–800CrossRefPubMedGoogle Scholar
  110. Schaub S (1912) Die Nestdunen der Vögel und ihre Bedeutung für die Phylogenie der Feder. Verh Naturforsch Ges Basel 23:131–182Google Scholar
  111. Schweitzer MH, Watt JA, Avci R, Forster CA, Krause DW, Knapp LW, Rogers R, Beech I, Marshall M (1999a) Keratin immunoreactivity in the Late Cretaceous bird Rahonavis ostromi. J Vertebr Paleontol 19:712–722CrossRefGoogle Scholar
  112. Schweitzer MH, Watt JA, Avci R, Knapp LW, Chiappe LM, Norell MA, Marshall M (1999b) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. J Exp Zool B Mol Dev Evol 285:146–157CrossRefGoogle Scholar
  113. Sengel P (1976) Morphogenesis of skin. Cambridge University Press, CambridgeGoogle Scholar
  114. Sereno PC, Beck AL, Dutheil DB, Gado B, Larsson HCE, Lyon GH, Marcot JD et al (1998) A long-snouted predatory dinosaur from Africa and the evolution of Spinosaurids. Science 282:1298–1302CrossRefPubMedGoogle Scholar
  115. Sondheimer E, Dence WA, Mattick LR, Silverman SR (1966) Composition of combustible concretions of the alewife, Alosa pseudoharengus. Science 152:221–223CrossRefPubMedGoogle Scholar
  116. Tischlinger H (1998) Erstnachweis von Pigmentfarben bei Plattenkalk-Teleosteern. Archaeopteryx 16:1–18Google Scholar
  117. Tischlinger H (2002) Der Eichstätter Archaeopteryx im langwelligen UV-Licht. Archaeopteryx 20:21–38Google Scholar
  118. Tischlinger H (2005) Neue Informationen zum Berliner Exemplar von Archaeopteryx lithographica H. v. Meyer 1861. Archaeopteryx 23:33–50Google Scholar
  119. Tischlinger H (2009) Der achte Archaeopteryx – das Daitinger Exemplar. Archaeopteryx 27:1–20Google Scholar
  120. Tischlinger H, Arratia G (2013) Ultraviolet light as a tool for investigating Mesozoic fishes, with a focus on the ichthyofauna of the Solnhofen archipelago. In: Arratia G, Schultze HP, Wilson MVH (eds) Mesozoic fishes, vol 5: Global diversity and evolution. Verlag Dr. Friedrich Pfeil, München, pp 549–560Google Scholar
  121. Tischlinger H, Frey E (2002) Ein Rhamphorhynchus (Pterosauria, Reptilia) mit ungewöhnlicher Flughauterhaltung aus dem Solnhofener Plattenkalk. Archaeopteryx 20:1–20Google Scholar
  122. Tischlinger H, Rauhut OWM (2015) Schuppenechsen (Lepidosauria). In: Arratia G, Schultze HP, Tischlinger H, Viohl G (eds) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München, pp 431–447Google Scholar
  123. Tischlinger H, Unwin DM (2004) UV-Untersuchungen des Berliner Exemplars von Archaeopteryx lithographica H. v. Meyer 1861 und der isolierten Archaeopteryx-Feder. Archaeopteryx 22:17–50Google Scholar
  124. Tsuihiji T, Watabe M, Tsogtbaatar K, Tsubamoto T, Barsbold R, Suzuki S et al (2011) Cranial osteology of a juvenile specimens of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of Bugin-Tsav, Mongolia. J Vertebr Paleontol 31:497–517CrossRefGoogle Scholar
  125. Van der Reest AJ, Wolfe AP, Currie PJ (2016) A densely feathered ornithomimid (Dinosauria: Theropoda) from the Upper Cretaceous Dinosaur Park Formation, Alberta, Canada. Cretac Res 58:108–117CrossRefGoogle Scholar
  126. Vinther J, Briggs DEG, Prum RO, Saranathan V (2008) The colour of fossil feathers. Biol Lett 4:522–525CrossRefPubMedPubMedCentralGoogle Scholar
  127. Viohl G (2015a) Die Plattenkalk-Typen der Südlichen Frankenalb. In: Arratia G, Schultze H-P, Tischlinger H, Viohl G (eds) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München, pp 72–77Google Scholar
  128. Viohl G (2015b) Die Grabung in Schamhaupten. In: Arratia G, Schultze H-P, Tischlinger H, Viohl G (eds) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München, pp 119–125Google Scholar
  129. Viohl G, Zapp M (2006) Die Fossil-Lagestätte Schamhaupten (oberstes Kimmeridgium, Südliche Frankenalb, Bayern). Archaeopteryx 24:27–78Google Scholar
  130. Viohl G, Zapp M (2007) Schamhaupten, an outstanding Fossil-Lagerstätte in a silicified Plattenkalk around the Kimmeridgian-Tithonian boundary (Southern Franconian Alb, Bavaria). Neues Jahrb Geol Palaontol Abh 245:127–142CrossRefGoogle Scholar
  131. Wang X, Pittman M, Zheng X, Kaye TG, Falk AR, Hartman S, Xu X (2017) Basal paravian functional anatomy illuminated by high-detail body outline. Nat Commun 8:14576.  https://doi.org/10.1038/ncomms14576 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Wellnhofer P (2009) Archaeopteryx: the icon of evolution. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  133. Werneburg I, Hugi J, Müller J, Sánchez-Villagra MR (2009) Embryogenesis and ossification of Emydura subglobosa (Testudines, Pleurodira, Chelidae) and patterns of turtle development. Dev Dyn 238:2770–2786CrossRefGoogle Scholar
  134. Wilby PR, Briggs DEG, Bernier P, Gaillard C (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790CrossRefGoogle Scholar
  135. Wiman C (1942) Über ältere und neuere Funde von Leichenwachs. Senckenbergiana 25:1–19Google Scholar
  136. Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 19–33Google Scholar
  137. Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329Google Scholar
  138. Xu X, Zhou Z, Prum RO (2001) Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410:200–204CrossRefGoogle Scholar
  139. Xu X, Norell MA, Kuang X, Wang X, Zhao Q, Jia C (2004) Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature 431:680–684CrossRefGoogle Scholar
  140. Xu X, Zheng X, You H (2009) A new feather type in a nonavian theropod and the early evolution of feathers. Proc Natl Acad Sci USA 106:832–834CrossRefGoogle Scholar
  141. Xu X, Zheng X, You H (2010) Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1338–1341CrossRefPubMedPubMedCentralGoogle Scholar
  142. Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484:92–95CrossRefGoogle Scholar
  143. Xu X, Zhou Z, Dudley R, Mackem S, Chuong C, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:12532931–12532910Google Scholar
  144. Xu X, Zheng X, Sullivan C, Wang W, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y (2015) A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 251:70–73CrossRefGoogle Scholar
  145. Yang Z, Jiang B, McNamara ME, Kearns SL, Pittman M, Kaye TG, Orr PJ, Xu X, Benton MJ (2018) Pterosaur integumentary structures with complex feather-like branching. Nat Ecol Evol 3:24–30CrossRefGoogle Scholar
  146. Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y, Eberth DA, Hadfield F (2012) Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338:510–514CrossRefGoogle Scholar
  147. Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Xu X, Wang X (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zhao X, Currie PJ (1993) A large crested theropod from the Jurassic of Xinjiang, People’s Republic of China. Can J Earth Sci 30:2027–2036CrossRefGoogle Scholar
  149. Zheng X, You H, Xu X, Dong Z (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336CrossRefGoogle Scholar
  150. Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X (2013) Hind wings in basal birds and the evolution of leg feathers. Science 339:1309–1312CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeosciencesUniversité de FribourgFribourgSwitzerland
  2. 2.SMNS Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  3. 3.LMU München, BiocenterPlanegg-MartinsriedGermany
  4. 4.GeoBio-Center of the LMU MünchenMunichGermany
  5. 5.StammhamGermany
  6. 6.SNSB, Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany
  7. 7.Department for Earth and Environmental SciencesLMU MünchenMunichGermany

Personalised recommendations