The Origin of Birds: Current Consensus, Controversy, and the Occurrence of Feathers

Part of the Fascinating Life Sciences book series (FLS)


Research in the late 1900s has established that birds are theropod dinosaurs, with the discovery of feather preservation in non-avian theropods being the last decisive evidence for the dinosaur origin of this group. Partially due to the great interest in the origin of birds, more phylogenetic analyses of non-avian theropod dinosaurs have probably been published than any other group of fossil vertebrates. Despite a lot of uncertainty in the exact placement of many taxa and even some major clades, there is a remarkable consensus about the hierarchical position of birds (here used for the total group, Avialae) within theropod dinosaurs. Thus, birds are part of Paraves, together with such well-known theropod groups as dromaeosaurids and troodontids; Paraves are part of Maniraptora, which furthermore include Oviraptorosauria, Therizinosauria, and Alvarezsauroidea; Maniraptora belong to Maniraptoriformes, which also include Ornithomimosauria; Maniraptoriformes are a subclade of Coelurosauria, to which Tyrannosauroidea and some other basal taxa also belong; Coelurosauria are part of Tetanurae, together with Allosauroidea and Megalosauroidea; finally, Tetanurae are a subclade of Theropoda, which also include Ceratosauria and Coelophysoidea.


Theropoda Avialae Aves Phylogenetic hierarchy 



This work was supported by the Volkswagen Foundation under grant I/84 640 (to OR) and the Swiss National Science Foundation under grant PZ00P2_174040 (to CF).


  1. Agnolín FL, Novas FE (2013) Avian ancestors. A review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. Springer, DordrechtGoogle Scholar
  2. Agnolín FL, Motta MJ, Egli FB, Lo Coco G, Novas FE (2019) Paravian phylogeny and the dinosaur-bird transition: an overview. Front Earth Sci 6:252CrossRefGoogle Scholar
  3. Agnolín FL, Novas FE (2011) Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? Anais da Academia Brasileira de Ciências 83:117–162CrossRefPubMedGoogle Scholar
  4. Allain R (2002) Discovery of megalosaur (Dinosauria, Theropoda) in the middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. J Vertebr Paleontol 22:548–563CrossRefGoogle Scholar
  5. Allain R, Tykoski RS, Aquesbi N, Jalil N-E, Manbaron M, Russell DA, Taquet P (2007) An Abelisauroid (Dinosauria: Theropoda) from the early Jurassic of the High Atlas Mountains, Morocco, and the radiation of Ceratosaurs. J Vertebr Paleontol 27:610–624CrossRefGoogle Scholar
  6. Apesteguía S, Smith ND, Juárez Valieri R, Makovicky PJ (2016) An unusual new theropod with a didactyl manus from the Upper Cretaceous of Patagonia, Argentina. PLoS One 11:e0157793CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aranciaga Rolando AM, Novas FE, Agnolín FL (2019) A reanalysis of Murusraptor barrosaensis Coria & Currie (2016) affords new evidence about the phylogenetical relationships of Megaraptora. Cretac Res 99:104–127CrossRefGoogle Scholar
  8. Azuma Y, Currie PJ (2000) A new carnosaur (Dinosauria: Theropoda) from the Lower Cretaceous of Japan. Can J Earth Sci 37:1735–1753CrossRefGoogle Scholar
  9. Barsbold R, Perle A (1980) Segnosauria, a new infraoder of carnivorous dinosaurs. Acta Palaeontologica Polonica Pol 25:187–195Google Scholar
  10. Benson RBJ (2010) A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zool J Linnean Soc 158:882–935CrossRefGoogle Scholar
  11. Benson RBJ, Hunt G, Carrano MT, Campione N, Mannion P (2018) Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:13–48CrossRefGoogle Scholar
  12. Benson RBJ, Carrano MT, Brusatte SL (2010) A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97:71–78CrossRefPubMedGoogle Scholar
  13. Bhullar B-AS, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature 487:223–226CrossRefPubMedGoogle Scholar
  14. Broom R (1913) On the South-African pseudosuchian Euparkeria and allied genera. Proc Zool Soc London 83:619–633CrossRefGoogle Scholar
  15. Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 6:1–18CrossRefGoogle Scholar
  16. Brusatte SL, Carr TD (2016) The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Sci Rep 6:20252CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brusatte SL, Sereno PC (2008) Phylogeny of Allosauroidea (Dinosauria: Theropoda): comparative analysis and resolution. J Syst Palaeontol 6:155–182CrossRefGoogle Scholar
  18. Brusatte SL, Norell MA, Carr TD, Erickson GM, Hutchinson JR, Balanoff AM, Bever GS, Choiniere JN, Makovicky PJ, Xu X (2010) Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science 329:1481–1485CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brusatte SL, Vremir M, Csiki-Sava Z, Turner AH, Watanabe A, Erickson GM, Norell MA (2013) The osteology of Balaur bondoc, an island-dwelling dromaeosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bull Am Museum Nat Hist 374:1–100CrossRefGoogle Scholar
  20. Brusatte SL, Lloyd GT, Wang SC, Norell MA (2014) Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol 24:2386–2392CrossRefPubMedGoogle Scholar
  21. Brusatte SL, O’Connor JK, Jarvis ED (2015) The origin and diversification of birds. Curr Biol 25:R888–R898CrossRefPubMedGoogle Scholar
  22. Calvo JO, Porfiri JD, Veralli C, Novas FE, Poblete F (2004) Phylogenetic status of Megaraptor namunhuaiquii Novas based on a new specimen from Neuquén, Patagonia, Argentina. Ameghiniana 41:565–575Google Scholar
  23. Carrano MT, Sampson SD, Forster CA (2002) The osteology of Masiakasaurus knopfleri, a small Abelisauroid (Dinosauria, Theropoda) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 22:510–534CrossRefGoogle Scholar
  24. Carrano MT, Hutchinson JR, Sampson SD (2005) New information on Segisaurus halli, a small theropod dinosaur from the Early Jurassic of Arizona. J Vertebr Paleontol 25:835–849CrossRefGoogle Scholar
  25. Carrano MT, Benson RBJ, Sampson SD (2012) The phylogeny of Tetanurae (Dinosauria: Theropoda). J Syst Palaeontol 10:211–300CrossRefGoogle Scholar
  26. Cau A (2018) The assembly of the avian body plan: a 160-million-year long process. Bollettino della Società Paleontologica Italiana 57:1–25Google Scholar
  27. Cau A, Brougham T, Naish D (2015) The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): dromaeosaurid or flightless bird? PeerJ 3:e1032CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cau A, Beyrand V, Voeten FAE, Fernandez V, Taffereau P, Stein K, Barsbold R, Tsogtbaatar K, Currie PJ, Godefroit P (2017) Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552:395–399CrossRefPubMedGoogle Scholar
  29. Charig AJ, Greenaway F, Milner AC, Walker CA, Whybrow PJ (1986) Archaeopteryx is not a forgery. Science 232:622–626CrossRefPubMedGoogle Scholar
  30. Chen P, Dong Z, Zhen S (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152CrossRefGoogle Scholar
  31. Chiappe LM (2002) Basal bird phylogeny: problems and solutions. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: Above the heads of dinosaurs. University of California Press, Berkeley, pp 448–472Google Scholar
  32. Chiappe LM (2009) Downsized dinosaurs: the evolutionary transition to modern birds. Evol Educ Outreach 2:248–256CrossRefGoogle Scholar
  33. Chiappe LM, Göhlich UB (2010) Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 258:257–296CrossRefGoogle Scholar
  34. Chiappe LM, Norell MA, Clark JM (1998) The skull of a relative of the stem-group bird Mononykus. Nature 392:275–278CrossRefGoogle Scholar
  35. Choiniere JN, Xu X, Clark JM, Forster CA, Guo Y, Han F (2010) A basal alvarezsauroid theropod from the Early Jurassic of Xinjiang, China. Science 327:571–574CrossRefPubMedGoogle Scholar
  36. Choiniere JN, Clark JM, Forster CA, Norell MA, Eberth DA, Erickson GM, Chu H, Xu X (2014) A juvenile specimen of a new coelurosaur (Dinosauria: Theropoda) from the Middle–Late Jurassic Shishugou Formation of Xinjiang, People’s Republic of China. J Syst Palaeontol 12:177–215CrossRefGoogle Scholar
  37. Cieri RL, Farmer CG (2016) Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution. J Comp Psychol B 186:541–552Google Scholar
  38. Clark JM, Norell MA, Makovicky PJ (2002) Cladistic approaches to the relationships of birds to other theropod dinosaurs. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 31–61Google Scholar
  39. Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–308CrossRefPubMedGoogle Scholar
  40. Clarke JA, Zhou Z, Zhang F (2006) Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J Anat 208:287–308CrossRefPubMedPubMedCentralGoogle Scholar
  41. Colbert EH (1964) Relationships of the saurischian dinosaurs. Am Museum Novitates 2181:1–24Google Scholar
  42. Coria RA, Currie PJ (2016) A new megaraptoran dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia. PLoS One 11:e015797CrossRefGoogle Scholar
  43. Cuesta E, Ortega F, Sanz JL (2018) Appendicular osteology of Concavenator corcovatus (Theropoda; Carcharodontosauridae; Early Cretaceous; Spain). J Vertebr Paleontol 38:e1485153CrossRefGoogle Scholar
  44. Dal Sasso C, Maganuco S (2011) Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 37:1–281Google Scholar
  45. Dal Sasso C, Maganuco S, Cau A (2018) The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds. PeerJ 6:e5976CrossRefPubMedPubMedCentralGoogle Scholar
  46. Darwin CR (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  47. Davis PG, Briggs DEG (1995) Fossilization of feathers. Geology 23:783–786CrossRefGoogle Scholar
  48. Ezcurra MD (2017) A new early coelophysoid neotheropod from the Late Triassic of northwestern Argentina. Ameghiniana 54:506–538CrossRefGoogle Scholar
  49. Ezcurra MD, Brusatte SL (2011) Taxonomic and phylogenetic reassessment of the early neotheropod dinosaur C amposaurus arizonensis from the Late Triassic of North America. Palaeontology 54:763–772CrossRefGoogle Scholar
  50. Ezcurra MD, Cuny G (2007) The coelophysoid Lophostropheus airelensis, gen. nov.: a review of the systematics of ‘Liliensternusairelensis from the Triassic-Jurassic outcrops of Normandy (France). J Vertebr Paleontol 27:73–86CrossRefGoogle Scholar
  51. Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science 327:338–340CrossRefPubMedGoogle Scholar
  52. Feduccia A (1996) The origin and evolution of birds. Yale University Press, New HavenGoogle Scholar
  53. Feduccia A (2013) Bird origins anew. Auk 130:1–12CrossRefGoogle Scholar
  54. Forster CA (1999) Gondwanan dinosaur evolution and biogeographic analysis. J Afr Earth Sci 28:169–185CrossRefGoogle Scholar
  55. Foth C, Rauhut OWM (2017) Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol Biol 17:236CrossRefPubMedPubMedCentralGoogle Scholar
  56. Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82CrossRefPubMedPubMedCentralGoogle Scholar
  57. Foth C, Hedrick BP, Ezcurra MD (2016) Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589CrossRefPubMedPubMedCentralGoogle Scholar
  58. Foth C, Haug C, Haug JT, Tischlinger H, Rauhut OWM (2020) Two of a feather: a comparison of the preserved integument in the juvenile theropod dinosaurs Sciurumimus and Juravenator from the Kimmeridgian Torleite Formation of southern Germany. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamCrossRefGoogle Scholar
  59. Gauthier JA (1986) Saurischian monophyly and the origin of birds. Memoirs Calif Acad Sci 8:1–55Google Scholar
  60. Gierlinski G (1997) What type of feather could nonavian dinosaur have, according to an Early Jurassic ichnological evidence from Massachusetts? Przeglad Geologiczny 54:419–422Google Scholar
  61. Godefroit P, Demuynck H, Dyke GJ, Hu D, Escuillié F, Claeys P (2013a) Reduced plumage and flight ability of a new Jurassic paravian theropod from China. Nat Commun 4:1394CrossRefGoogle Scholar
  62. Godefroit P, Cau A, Hu D, Escuillié F, Wu W, Dyke GJ (2013b) A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498:359–362CrossRefGoogle Scholar
  63. Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455CrossRefGoogle Scholar
  64. Godefroit P, Sinitsa SM, Cincotta A, McNamara ME, Reshetova SA, Dhouailly D (2020) Integumentary structures in Kulindadromeus zabaikalicus, a Basal Neornithischian Dinosaur from the Jurassic of Siberia. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
  65. Heilmann G (1926) The origin of birds. Witherby, LondonGoogle Scholar
  66. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  67. Hocknull SA, White MA, Tischler TR, Cook AC, Calleja ND, Sloan T, Elliot DA (2009) New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia. PLoS One 4:e6190CrossRefPubMedPubMedCentralGoogle Scholar
  68. Holtz TRJ (1994) The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. J Paleontol 68:1100–1117CrossRefGoogle Scholar
  69. Holtz TR (1996) Phylogenetic taxonomy of the Coelurosauria (Dinosauria: Theropoda). J Paleontol 70:536–538CrossRefGoogle Scholar
  70. Holtz TRJ (1998) A new phylogeny of the carnivorous dinosaurs. Gaia 15:5–61Google Scholar
  71. Holtz TRJ, Molnar RE, Currie PJ (2004) Basal Tetanurae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. University of California Press, Berkeley, pp 71–110CrossRefGoogle Scholar
  72. Hone DWE, Holtz TRJ (2017) A century of spinosaurs—a review and revision of the Spinosauridae with comments on their ecology. Acta Geologica Sinica 91:1120–1132CrossRefGoogle Scholar
  73. Hou L, Zhou Z, Martin LD, Feduccia A (1995) A beaked bird from the Jurassic of China. Nature 377:616–618CrossRefGoogle Scholar
  74. Hoyle F, Wickramasinghe C (1985) Archaeopteryx, the primordial bird: a case of fossil forgery. Christopher Davies, SwanseaGoogle Scholar
  75. Hu D, Hou L, Zhang L, Xu X (2009) A pre- Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hu D, Clarke JA, Eliason CM, Qiu R, Li Q, Shawkey MD, Zhao C, D’Alba L, Jiang J, Xu X (2018) A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat Commun 9:217CrossRefPubMedPubMedCentralGoogle Scholar
  77. Huxley TH (1868) On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist 4:66–75Google Scholar
  78. Ji Q, Currie PJ, Norell MA, Ji S (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  79. Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA, Gong E, Xu X, Wang Y (2015) Laser-stimulated fluorescence in paleontology. PLoS One 10:e0125923CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kaye TG, Pittman M, Marugán-Lobón J, Martín-Abad H, Sanz JL, Buscalioni AD (2019) Fully fledged enantiornithine hatchling revealed by laser-stimulated fluorescence supports precocial nesting behavior. Sci Rep 9:5006CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kellner AWA (2002) A review of avian Mesozoic fossil feathers. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of Dinosaurs. University of California Press, Berkeley, pp 389–404Google Scholar
  82. Kundrát M (2004) When did theropods become feathered? Evidence for pre-Archaeopteryx feathery appendages. J Exp Zool (MOL DEV EVOL) 302B:355–364CrossRefGoogle Scholar
  83. Langer MC, Rincón AD, Ramezani J, Solórzano A, Rauhut OWM (2014) New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta Formation, Venezuelan Andes. R Soc Open Sci 1:140184CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lee Y-N, Barsbold R, Currie PJ, Kobayashi Y, Lee H-J, Godefroit P, Escuillié F, Tsogtbaatar C (2014) Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515:257–260CrossRefPubMedGoogle Scholar
  85. Lefèvre U, Cau A, Cincotta A, Hu D, Chinsamy A, Escuillié F, Godefroit P (2017) A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci Nat 104:74CrossRefGoogle Scholar
  86. Li Z, Zhou Z, Wang M, Clarke JA (2014) A new specimen of large-bodied basal Enantiornithine Bohaiornis from the early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J Paleontol 88:99–108CrossRefGoogle Scholar
  87. Lingham-Soliar T (2003a) The dinosaurian origin of feathers: perspectives from dolphin (Cetacea) collagen fibers. Naturwissenschaften 90:563–567CrossRefPubMedGoogle Scholar
  88. Lingham-Soliar T (2003b) Evolution of birds: ichthyosaur integumental fibers conform to dromaeosaur protofeathers. Naturwissenschaften 90:428–432CrossRefPubMedGoogle Scholar
  89. Lingham-Soliar T (2010) Dinosaur protofeathers: pushing back the origin of feathers into the Middle Triassic. J Ornithol 151:193–200CrossRefGoogle Scholar
  90. Lingham-Soliar T (2012) The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur. J Ornithol 153:699–711CrossRefGoogle Scholar
  91. Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc R Soc Lond B 274:1823–1829CrossRefGoogle Scholar
  92. Makovicky PJ, Sues H-D (1998) Anatomy and phylogenetic relationships of the theropod dinosaur Microvenator celer from the Lower Cretaceous of Montana. Am Museum Novitates 3240:1–27Google Scholar
  93. Makovicky PJ, Norell MA, Clark JM, Rowe TB (2003) Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am Museum Novitates 3402:1–32CrossRefGoogle Scholar
  94. Maleev EA (1954) Noviy chyeryepoobrazniy yashschyer Mongolii [A new turtle-like reptile from Mongolia]. Priroda 1954:106–108Google Scholar
  95. Martin LD (1983) The origin and the early radiation of birds. In: Brush AH, Clark GA (eds) Perspectives in ornithology. Cambridge University Press, Cambridge, pp 291–338CrossRefGoogle Scholar
  96. Martínez RN, Apaldetti C (2017) A late Norian-Rhaetian coelophysid neotheropod (Dinosauria, Saurischia) from the Quebrada Del Barro Formation, northwestern Argentina. Ameghiniana 54:488–505CrossRefGoogle Scholar
  97. Martin LD, Stewart JD, Whetstone KN (1980) The origin of birds: structure of the tarsus and teeth. Auk 97:86–93Google Scholar
  98. Maryańska T, Osmólska H, Wolsan M (2002) Avialian status for Oviraptorosauria. Acta Palaeontologica Polonica 47:97–116Google Scholar
  99. Mayr G (2009) Paleogene fossil birds. Springer, BerlinCrossRefGoogle Scholar
  100. Mayr G (2010) Response to Lingham-Soliar: Dinosaur protofeathers: pushing back to origin of feathers into the Middle Triassic. J Ornithol 151:523–524CrossRefGoogle Scholar
  101. Mayr G (2017) Avian evolution. Wiley, ChichesterGoogle Scholar
  102. Norell MA, Clark JM, Makovicky PJ (2001) Phylogenetic relationships among coelurosaurian theropods. In: Gauthier JA (ed) New perspectives on the origin and early evolution of birds: Proceedings of the international symposium in Honor of John H. Ostrom. Yale University, New Haven, pp 49–67Google Scholar
  103. Norell MA, Clark JM, Turner AH, Makovicky PJ, Barsbold R, Rowe TB (2006) A new droameosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). Am Museum Novitates 3545:1–51CrossRefGoogle Scholar
  104. Novas FE (1992) Phylogenetic relationships of the basal dinosaurs, the Herrerasauridae. Palaeontology 35:51–62Google Scholar
  105. Novas FE (1996) Alvarezsauridae, Cretaceous basal birds from Patagonia and Mongolia. Mem Queensland Mus 39:675–702Google Scholar
  106. Novas FE (1997) Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. J Vertebr Paleontol 17:137–166CrossRefGoogle Scholar
  107. Novas FE (1998) Megaraptor namunhuaiquii, gen. et so. nov., a large-clawed, Late Cretaceous theropod from Patagonia. J Vertebr Paleontol 18:4–9CrossRefGoogle Scholar
  108. Novas FE, Agnolín FL, Ezcurra MD, Porfiri JD, Canale JI (2013) Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretac Res 45:174–215CrossRefGoogle Scholar
  109. Novas FE, Salgado L, Suárez M, Agnolín FL, Ezcurra MD, Chimento NR, de al Cruz R, Isasi MP, Vargas AO, Rubular-Rogers D (2015) An enigmatic plant-eating theropod from the Late Jurassic period of Chile. Nature 522:331–334CrossRefPubMedGoogle Scholar
  110. Novas FE, Aranciaga Rolando AM, Agnolín FL (2016) Phylogenetic relationships of the Cretaceous Gondwanan theropods Megaraptor and Australovenator: the evidence afforded by their manual anatomy. Mem of Mus Vic 74:49–61CrossRefGoogle Scholar
  111. O’Connor JK, Wang X, Chiappe LM, Gao C, Meng Q, Cheng X, Liu J (2009) Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J Vertebr Paleontol 29:188–204CrossRefGoogle Scholar
  112. O’Connor JK, Chiappe LM, Bell A (2011a) Pre-modern birds: avian divergences in the Mesozoic. In: Dyke GJ, Kaiser GW (eds) Living dinosaurs: the evolutionary history of modern birds. John Wiley, Chichester, pp 39–119CrossRefGoogle Scholar
  113. O’Connor JK, Chiappe LM, Gao C, Zhao B (2011b) Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56:463–475CrossRefGoogle Scholar
  114. O’Connor JK, Zhang Y, Chiappe LM, Meng Q, Quanguo L, Di L (2013) A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J Vertebr Paleontol 33:1–12CrossRefGoogle Scholar
  115. O’Connor JK, Wang M, Hu H (2016) A new ornithuromorph (Aves) with an elongate rostrum from the Jehol Biota, and the early evolution of rostralization in birds. J Syst Palaeontol 14:939–948CrossRefGoogle Scholar
  116. Ortega F, Escaso F, Sanz JL (2010) A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. Nature 467:203–206CrossRefGoogle Scholar
  117. Ostrom JH (1969a) A new theropod dinosaur from the Lower Cretaceous of Montana. Postilla 128:1–17Google Scholar
  118. Ostrom JH (1969b) Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum Nat Hist Bull 30:1–165Google Scholar
  119. Ostrom JH (1970) Archaeopteryx: notice of a ‘new’ specimen. Science 170:537–538CrossRefPubMedGoogle Scholar
  120. Ostrom JH (1972) Description of the Archaeopteryx specimen in the Teyler Museum, Haarlem. Proceedings Koninklijk Nederlandse Akademie van Wetenschappen, B 75:289–305Google Scholar
  121. Ostrom JH (1973) The ancestry of birds. Nature 242:136CrossRefGoogle Scholar
  122. Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linnean Soc 8:91–182CrossRefGoogle Scholar
  123. Owen R (1863) On the Archaeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solenhofen. Philos Trans R Soc Lond 153:33–47Google Scholar
  124. Paul GS (1984) The segnosaurian dinosaurs: relics of the prosauropod-ornithischian transition. J Vertebr Paleontol 4:507–515CrossRefGoogle Scholar
  125. Paul GS (2002) Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds. The John Hopkins University Press, BaltimoreGoogle Scholar
  126. Perle A (1979) Segnosauridae - a new family of theropods from the Late Cretaceous of Mongolia. Trudy Sovmestnay Sovetsko-Mongolskay Paleontologiyeskay Ekspeditsiy 8:45–55Google Scholar
  127. Perle A (1982) A hind limb of Therizinosaurus from the Upper Cretaceous of Mongolia. Probl in Mongolian Geol 5:94–98Google Scholar
  128. Perle A, Chiappe LM, Barsbold R, Clark JM, Norell MA (1994) Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. Am Mus Novit 3105:1–19Google Scholar
  129. Pol D, Rauhut OWM (2012) A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. Proc R Soc B 279:3170–3175CrossRefPubMedGoogle Scholar
  130. Porfiri JD, Novas FE, Calvo JO, Agnolín FL, Ezcurra MD, Cerda IA (2014) Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid radiation. Cretac Res 51:35–55CrossRefGoogle Scholar
  131. Prado GMEM, Anelli LE, Petri S, Romero GR (2016) New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil. PeerJ 4:e1916CrossRefPubMedPubMedCentralGoogle Scholar
  132. Prum RO (2002) Perspectives in ornithology. Why ornithologist should care about the theropod origin of birds. Auk 119:1–17CrossRefGoogle Scholar
  133. Prum RO (2003) Are current critiques of the theropod origin of birds science? Rebuttal to Feduccia (2002). Auk 120:550–561CrossRefGoogle Scholar
  134. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Moriarty Lemmon E, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573CrossRefPubMedGoogle Scholar
  135. Rauhut OWM (1998) Elaphrosaurus bambergi and the early evolution of theropod dinosaurs. J Vertebr Paleontol 18:71AGoogle Scholar
  136. Rauhut OWM (2003) The interrelationships and evolution of basal theropod dinosaurs. Spec Pap Palaeontol 69:1–213Google Scholar
  137. Rauhut OWM, Pol D (2019) Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci Rep 9:18826CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rauhut OWM, Carrano MT (2016) The theropod dinosaur Elaphrosaurus bambergi Janensch, 1920, from the Late Jurassic of Tendaguru, Tanzania. Zool J Linnean Soc 178:546–610CrossRefGoogle Scholar
  139. Rauhut OWM, Xu X (2005) The small theropod dinosaurs Tugulusaurus and Phaedrolosaurus from the Early Cretaceous of Xinjiang, China. J Vertebr Paleontol 25:107–118CrossRefGoogle Scholar
  140. Rauhut OWM, Milner AC, Moore-Fay S (2010) Cranial osteology and phylogenetic position of the theropod dinosaur Proceratosaurus bradleyi (Woodward, 1910) from the Middle Jurassic of England. Zool J Linnean Soc 158:155–195CrossRefGoogle Scholar
  141. Rauhut OWM, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proc Natl Acad Sci USA 109:11746–11751CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rauhut OWM, Hübner TR, Lanser K-P (2016) A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: implications for theropod evolution and faunal turnover in the Jurassic. Palaeontologia Electronica 19:26AGoogle Scholar
  143. Rauhut OWM, Tischlinger H, Foth C (2019) A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8:e43789CrossRefPubMedPubMedCentralGoogle Scholar
  144. Rietschel S (1985) Feathers and wings of Archaeopteryx and the question of her fligth ability. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 251–260Google Scholar
  145. Russell DA, Dong Z (1993) The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People’s Republic of China. Can J Earth Sci 30:2107–2127CrossRefGoogle Scholar
  146. Schachner ER, Hutchinson JR, Farmer CG (2013) Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 1:e60CrossRefPubMedPubMedCentralGoogle Scholar
  147. Schweitzer MH, Watt JA, Avci R, Knapp LW, Chiappe LM, Norell MA, Marshall M (1999) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. J Exp Zool (MOL DEV EVOL) 285:146–157CrossRefGoogle Scholar
  148. Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil perservation. C R Palevol 7:159–184CrossRefGoogle Scholar
  149. Senter P (2007) A new look at the phylogeny of Coelurosauria (Dinosauria: Theropoda). J Syst Palaeontol 5:429–463CrossRefGoogle Scholar
  150. Sereno PC (1997) The origin and evolution of dinosaurs. Annu Rev Earth Planetary Sci 25:435–489CrossRefGoogle Scholar
  151. Sereno PC (1998) A rationale for phylogenetic definitions with application to the higher-level taxonomy of Dinosauria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 210:41–83CrossRefGoogle Scholar
  152. Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147CrossRefPubMedGoogle Scholar
  153. Sereno PC, Martinez RN, Wilson JA, Varricchio DJ, Alcober OA, Larsson HCE (2008) Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3:e3303CrossRefPubMedPubMedCentralGoogle Scholar
  154. Smith ND, Makovicky PJ, Hammer WR, Currie PJ (2007) Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zool J Linnean Soc 151:377–421CrossRefGoogle Scholar
  155. Smith NA, Chiappe LM, Clarke JA, Edwards SV, Nesbitt SJ, Norell MA, Stidham TA, Turner AH, van Tuinen M, Vinther J, Xu X (2015) Rhetoric vs. reality: a commentary on “Bird origins anew” by A. Feduccia. Auk 132:467–480CrossRefGoogle Scholar
  156. Smithwick F, Vinther J (2020) Review on color patterns of fossil feathers. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
  157. Smithwick FM, Mayr G, Saitta ET, Benton MJ, Vinther J (2017) On the purported presence of fossilized collagen fibres in an ichthyosaur and a theropod dinosaur. Palaeontology 60:409–422CrossRefGoogle Scholar
  158. Stromer E (1915) Ergebnisse der Forschungsreisen Prof. Stromers in den Wüsten Ägyptens. II Wirbeltier-Reste der Baharîje-Stufe (unterstes Cenoman). 3. Das Original des Theropoden Spinosaurus aegyptiacus nov. gen., nov. spec. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 28:1–32Google Scholar
  159. Tarsitano S, Hecht MK (1980) A reconsideration of the reptilian relationships of Archaeopteryx. Zool J Linnean Soc 69:149–182CrossRefGoogle Scholar
  160. Therrien F, Henderson DM (2007) My theropod is bigger than yours...or not: estimating body size from skull length in theropods. J Vertebr Paleontol 27:108–115CrossRefGoogle Scholar
  161. Turner AH, Makovicky PJ, Norell MA (2012) A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Museum Nat Hist 371:1–206CrossRefGoogle Scholar
  162. von Meyer H (1861a) Vogel-Federn und Palpipes priscus von Solnhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1861:561Google Scholar
  163. von Meyer H (1861b) Archaeopteryx lithographica und Pterodactylus. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1861:678–679Google Scholar
  164. Wagner A (1861) Beiträge zur Kenntnis der urweltlichen Fauna des lithographischen Schiefers. 2. Abt. Schildkröten und Saurier. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 9:67–124Google Scholar
  165. Wagner A (1862) On a new fossil reptile supposed to be furnished with feathers. Ann Mag Nat Hist 9:261–267CrossRefGoogle Scholar
  166. Wang M, Zhou Z (2017) The evolution of birds with implications from new fossil evidences. In: Maina JN (ed) The biology of the avian respiratory system. Springer, Cham, pp 1–26Google Scholar
  167. Wang M, Zheng X, O’Connor JK, Lloyd GT, Wang X, Wang Y, Zhang X, Zhou Z (2015) The oldest record of Ornithuromorpha from the early cretaceous of China. Nat Commun 6:6987CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wang S, Stiegler J, Amiot R, Wang X, Du G, Clark JM, Xu X (2017) Extreme ontogenetic changes in a ceratosaurian theropod. Curr Biol 27:1–5CrossRefGoogle Scholar
  169. Wang M, O’Connor JK, Xu X, Zhou Z (2019) A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569:256–259CrossRefGoogle Scholar
  170. Wellnhofer P (1974) Das fünfte Skelettexemplar von Archaeopteryx. Palaeontographica Abt. A 147:169–216Google Scholar
  171. Wellnhofer P (2008) Archaeopteryx: Der Urvogel von Solnhofen. Verlag Dr Friedrich Pfeil, MünchenGoogle Scholar
  172. Witmer LM (2002) The debate on avian ancestry: phylogeny, function, and fossils. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 3–30Google Scholar
  173. Xing L, McKellar RC, Wang M, Bai M, O’Connor JK, Benton MJ, Zhang J, Wang Y, Tseng K, Lockley MG, Li G, Zhang W, Xu X (2016a) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 7:12089CrossRefPubMedPubMedCentralGoogle Scholar
  174. Xing L, McKellar RC, Xu X, Li G, Bai M, Persons WS IV, Miyashita T, Benton MJ, Zhang J, Wolfe AP, Yi Q, Tseng K, Ran H, Currie PJ (2016b) A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr Biol 26:1–9CrossRefGoogle Scholar
  175. Xing L, McKellar RC, O’Connor JK, Niu K, Mai H (2019) A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber. Sci Rep 9:15513CrossRefPubMedPubMedCentralGoogle Scholar
  176. Xu X (2006) Feathered dinosaurs from China and the evolution of major avian characters. Integr Zool 1:4–11CrossRefGoogle Scholar
  177. Xu X (2020) Filamentous integuments in nonavialan theropods and their kin: advances and future perspectives for understanding the evolution of feathers. In: Foth C, OWM R (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
  178. Xu X, Fucheng F (2005) A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 92:173–177CrossRefPubMedPubMedCentralGoogle Scholar
  179. Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329Google Scholar
  180. Xu X, Pol D (2014) Archaeopteryx, paravian phylogenetic analyses, and the use of probability-based methods for palaeontological datasets. J Syst Palaeontol 12:323–334CrossRefGoogle Scholar
  181. Xu X, Wang X, Wu X (1999a) A dromaeosaurid dinosaur with filamentous integument from the Yixian Formation of China. Nature 401:262–266CrossRefGoogle Scholar
  182. Xu X, Tang Z, Wang X (1999b) A therizinosauroid dinosaur with integumentary structures from China. Nature 399:350–354CrossRefGoogle Scholar
  183. Xu X, Zhou Z, Prum RO (2001) Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410:200–204CrossRefGoogle Scholar
  184. Xu X, Norell MA, Wang X, Makovicky PJ, Wu X (2002) A basal troodontid from the Early Cretaceous of China. Nature 415:780–784CrossRefPubMedGoogle Scholar
  185. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340CrossRefGoogle Scholar
  186. Xu X, Tan Q, Wang J, Zhao X, Tan L (2007) A gigantic bird-like dinosaur from the Late Cretaceous of China. Nature 447:844–847CrossRefGoogle Scholar
  187. Xu X, Clark JM, Mo J, Choiniere JN, Forster CA, Erickson GM, Hone DWE, Sullivan C, Eberth DA, Nesbitt SJ, Zhao Q, Hernandez R, Jia C, Han F, Guo Y (2009) A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459:940–944CrossRefPubMedGoogle Scholar
  188. Xu X, Ma Q, Hu D (2010) Pre-Archaeopteryx coelurosaurian dinosaurs and their implications for understanding avian origins. Chin Sci Bull 55:3971–3977CrossRefGoogle Scholar
  189. Xu X, You H, Du K, Han F (2011) An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475:465–470CrossRefPubMedPubMedCentralGoogle Scholar
  190. Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484:92–95CrossRefGoogle Scholar
  191. Xu X, Zhou Z, Dudley R, Mackem S, Chuong C, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:1253293CrossRefGoogle Scholar
  192. Xu X, Zheng X, Sullivan C, Wang W, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y (2015) A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521:70–73CrossRefPubMedPubMedCentralGoogle Scholar
  193. Xu X, Zhou Z, Sullivan C, Wang Y, Ren D (2016) An updated review of the Middle-Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol Sin 90:2229–2243CrossRefGoogle Scholar
  194. Xu X, Choiniere JN, Tan Q, Benson RBJ, Clark JM, Sullivan C, Zhao Q, Han F, Ma Q, He Y, Wang S, Xing H, Tan L (2018) Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr Biol 28:1–8CrossRefGoogle Scholar
  195. Zanno LE (2010) A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora). J Syst Palaeontol 8:503–543CrossRefGoogle Scholar
  196. Zanno LE, Makovicky PJ (2011) Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc Natl Acad Sci USA 108:232–237CrossRefPubMedGoogle Scholar
  197. Zhang F, Zhou Z, Xu X, Wang X (2002) A juvenil coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89:394–398CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zhang F, Zhou Z, Xu X, Wang X, Sullivan C (2008) A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–1108CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhang Y, O’Connor JK, Di L, Meng Q, Sigurdsen T, Chiappe LM (2014) New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes) from a subadult specimen of Zhouornis hani. PeerJ 2:e407CrossRefPubMedPubMedCentralGoogle Scholar
  200. Zheng X, You H, Xu X, Dong Z (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336CrossRefGoogle Scholar
  201. Zhou Z, Clarke JA, Zhang F (2008) Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J Anat 212:565–577CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zhou Z, Zhang Z, Li Z (2010) A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc R Soc B 277:219–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.SNSB, Bayerische Staatssammlung für Paläontologie und GeologieMünchenGermany
  2. 2.Department of Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.GeoBioCenterLudwig-Maximilians-Universität MünchenMünchenGermany
  4. 4.Department of GeosciencesUniversité de FribourgFribourgSwitzerland
  5. 5.Staatliches Museum für Naturkunde StuttgartStuttgartGermany

Personalised recommendations