The Evolution of Feathers pp 27-45 | Cite as
The Origin of Birds: Current Consensus, Controversy, and the Occurrence of Feathers
- 1 Citations
- 8 Mentions
- 527 Downloads
Abstract
Research in the late 1900s has established that birds are theropod dinosaurs, with the discovery of feather preservation in non-avian theropods being the last decisive evidence for the dinosaur origin of this group. Partially due to the great interest in the origin of birds, more phylogenetic analyses of non-avian theropod dinosaurs have probably been published than any other group of fossil vertebrates. Despite a lot of uncertainty in the exact placement of many taxa and even some major clades, there is a remarkable consensus about the hierarchical position of birds (here used for the total group, Avialae) within theropod dinosaurs. Thus, birds are part of Paraves, together with such well-known theropod groups as dromaeosaurids and troodontids; Paraves are part of Maniraptora, which furthermore include Oviraptorosauria, Therizinosauria, and Alvarezsauroidea; Maniraptora belong to Maniraptoriformes, which also include Ornithomimosauria; Maniraptoriformes are a subclade of Coelurosauria, to which Tyrannosauroidea and some other basal taxa also belong; Coelurosauria are part of Tetanurae, together with Allosauroidea and Megalosauroidea; finally, Tetanurae are a subclade of Theropoda, which also include Ceratosauria and Coelophysoidea.
Keywords
Theropoda Avialae Aves Phylogenetic hierarchyNotes
Acknowledgements
This work was supported by the Volkswagen Foundation under grant I/84 640 (to OR) and the Swiss National Science Foundation under grant PZ00P2_174040 (to CF).
References
- Agnolín FL, Novas FE (2013) Avian ancestors. A review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. Springer, DordrechtGoogle Scholar
- Agnolín FL, Motta MJ, Egli FB, Lo Coco G, Novas FE (2019) Paravian phylogeny and the dinosaur-bird transition: an overview. Front Earth Sci 6:252CrossRefGoogle Scholar
- Agnolín FL, Novas FE (2011) Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? Anais da Academia Brasileira de Ciências 83:117–162CrossRefPubMedGoogle Scholar
- Allain R (2002) Discovery of megalosaur (Dinosauria, Theropoda) in the middle Bathonian of Normandy (France) and its implications for the phylogeny of basal Tetanurae. J Vertebr Paleontol 22:548–563CrossRefGoogle Scholar
- Allain R, Tykoski RS, Aquesbi N, Jalil N-E, Manbaron M, Russell DA, Taquet P (2007) An Abelisauroid (Dinosauria: Theropoda) from the early Jurassic of the High Atlas Mountains, Morocco, and the radiation of Ceratosaurs. J Vertebr Paleontol 27:610–624CrossRefGoogle Scholar
- Apesteguía S, Smith ND, Juárez Valieri R, Makovicky PJ (2016) An unusual new theropod with a didactyl manus from the Upper Cretaceous of Patagonia, Argentina. PLoS One 11:e0157793CrossRefPubMedPubMedCentralGoogle Scholar
- Aranciaga Rolando AM, Novas FE, Agnolín FL (2019) A reanalysis of Murusraptor barrosaensis Coria & Currie (2016) affords new evidence about the phylogenetical relationships of Megaraptora. Cretac Res 99:104–127CrossRefGoogle Scholar
- Azuma Y, Currie PJ (2000) A new carnosaur (Dinosauria: Theropoda) from the Lower Cretaceous of Japan. Can J Earth Sci 37:1735–1753CrossRefGoogle Scholar
- Barsbold R, Perle A (1980) Segnosauria, a new infraoder of carnivorous dinosaurs. Acta Palaeontologica Polonica Pol 25:187–195Google Scholar
- Benson RBJ (2010) A description of Megalosaurus bucklandii (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. Zool J Linnean Soc 158:882–935CrossRefGoogle Scholar
- Benson RBJ, Hunt G, Carrano MT, Campione N, Mannion P (2018) Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:13–48CrossRefGoogle Scholar
- Benson RBJ, Carrano MT, Brusatte SL (2010) A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97:71–78CrossRefPubMedGoogle Scholar
- Bhullar B-AS, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature 487:223–226CrossRefPubMedGoogle Scholar
- Broom R (1913) On the South-African pseudosuchian Euparkeria and allied genera. Proc Zool Soc London 83:619–633CrossRefGoogle Scholar
- Brown JW, Rest JS, Garcia-Moreno J, Sorenson MD, Mindell DP (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 6:1–18CrossRefGoogle Scholar
- Brusatte SL, Carr TD (2016) The phylogeny and evolutionary history of tyrannosauroid dinosaurs. Sci Rep 6:20252CrossRefPubMedPubMedCentralGoogle Scholar
- Brusatte SL, Sereno PC (2008) Phylogeny of Allosauroidea (Dinosauria: Theropoda): comparative analysis and resolution. J Syst Palaeontol 6:155–182CrossRefGoogle Scholar
- Brusatte SL, Norell MA, Carr TD, Erickson GM, Hutchinson JR, Balanoff AM, Bever GS, Choiniere JN, Makovicky PJ, Xu X (2010) Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science 329:1481–1485CrossRefPubMedPubMedCentralGoogle Scholar
- Brusatte SL, Vremir M, Csiki-Sava Z, Turner AH, Watanabe A, Erickson GM, Norell MA (2013) The osteology of Balaur bondoc, an island-dwelling dromaeosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bull Am Museum Nat Hist 374:1–100CrossRefGoogle Scholar
- Brusatte SL, Lloyd GT, Wang SC, Norell MA (2014) Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr Biol 24:2386–2392CrossRefPubMedGoogle Scholar
- Brusatte SL, O’Connor JK, Jarvis ED (2015) The origin and diversification of birds. Curr Biol 25:R888–R898CrossRefPubMedGoogle Scholar
- Calvo JO, Porfiri JD, Veralli C, Novas FE, Poblete F (2004) Phylogenetic status of Megaraptor namunhuaiquii Novas based on a new specimen from Neuquén, Patagonia, Argentina. Ameghiniana 41:565–575Google Scholar
- Carrano MT, Sampson SD, Forster CA (2002) The osteology of Masiakasaurus knopfleri, a small Abelisauroid (Dinosauria, Theropoda) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 22:510–534CrossRefGoogle Scholar
- Carrano MT, Hutchinson JR, Sampson SD (2005) New information on Segisaurus halli, a small theropod dinosaur from the Early Jurassic of Arizona. J Vertebr Paleontol 25:835–849CrossRefGoogle Scholar
- Carrano MT, Benson RBJ, Sampson SD (2012) The phylogeny of Tetanurae (Dinosauria: Theropoda). J Syst Palaeontol 10:211–300CrossRefGoogle Scholar
- Cau A (2018) The assembly of the avian body plan: a 160-million-year long process. Bollettino della Società Paleontologica Italiana 57:1–25Google Scholar
- Cau A, Brougham T, Naish D (2015) The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): dromaeosaurid or flightless bird? PeerJ 3:e1032CrossRefPubMedPubMedCentralGoogle Scholar
- Cau A, Beyrand V, Voeten FAE, Fernandez V, Taffereau P, Stein K, Barsbold R, Tsogtbaatar K, Currie PJ, Godefroit P (2017) Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552:395–399CrossRefPubMedGoogle Scholar
- Charig AJ, Greenaway F, Milner AC, Walker CA, Whybrow PJ (1986) Archaeopteryx is not a forgery. Science 232:622–626CrossRefPubMedGoogle Scholar
- Chen P, Dong Z, Zhen S (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152CrossRefGoogle Scholar
- Chiappe LM (2002) Basal bird phylogeny: problems and solutions. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: Above the heads of dinosaurs. University of California Press, Berkeley, pp 448–472Google Scholar
- Chiappe LM (2009) Downsized dinosaurs: the evolutionary transition to modern birds. Evol Educ Outreach 2:248–256CrossRefGoogle Scholar
- Chiappe LM, Göhlich UB (2010) Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 258:257–296CrossRefGoogle Scholar
- Chiappe LM, Norell MA, Clark JM (1998) The skull of a relative of the stem-group bird Mononykus. Nature 392:275–278CrossRefGoogle Scholar
- Choiniere JN, Xu X, Clark JM, Forster CA, Guo Y, Han F (2010) A basal alvarezsauroid theropod from the Early Jurassic of Xinjiang, China. Science 327:571–574CrossRefPubMedGoogle Scholar
- Choiniere JN, Clark JM, Forster CA, Norell MA, Eberth DA, Erickson GM, Chu H, Xu X (2014) A juvenile specimen of a new coelurosaur (Dinosauria: Theropoda) from the Middle–Late Jurassic Shishugou Formation of Xinjiang, People’s Republic of China. J Syst Palaeontol 12:177–215CrossRefGoogle Scholar
- Cieri RL, Farmer CG (2016) Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution. J Comp Psychol B 186:541–552Google Scholar
- Clark JM, Norell MA, Makovicky PJ (2002) Cladistic approaches to the relationships of birds to other theropod dinosaurs. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 31–61Google Scholar
- Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA (2005) Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–308CrossRefPubMedGoogle Scholar
- Clarke JA, Zhou Z, Zhang F (2006) Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J Anat 208:287–308CrossRefPubMedPubMedCentralGoogle Scholar
- Colbert EH (1964) Relationships of the saurischian dinosaurs. Am Museum Novitates 2181:1–24Google Scholar
- Coria RA, Currie PJ (2016) A new megaraptoran dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia. PLoS One 11:e015797CrossRefGoogle Scholar
- Cuesta E, Ortega F, Sanz JL (2018) Appendicular osteology of Concavenator corcovatus (Theropoda; Carcharodontosauridae; Early Cretaceous; Spain). J Vertebr Paleontol 38:e1485153CrossRefGoogle Scholar
- Dal Sasso C, Maganuco S (2011) Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 37:1–281Google Scholar
- Dal Sasso C, Maganuco S, Cau A (2018) The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds. PeerJ 6:e5976CrossRefPubMedPubMedCentralGoogle Scholar
- Darwin CR (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
- Davis PG, Briggs DEG (1995) Fossilization of feathers. Geology 23:783–786CrossRefGoogle Scholar
- Ezcurra MD (2017) A new early coelophysoid neotheropod from the Late Triassic of northwestern Argentina. Ameghiniana 54:506–538CrossRefGoogle Scholar
- Ezcurra MD, Brusatte SL (2011) Taxonomic and phylogenetic reassessment of the early neotheropod dinosaur C amposaurus arizonensis from the Late Triassic of North America. Palaeontology 54:763–772CrossRefGoogle Scholar
- Ezcurra MD, Cuny G (2007) The coelophysoid Lophostropheus airelensis, gen. nov.: a review of the systematics of ‘Liliensternus’ airelensis from the Triassic-Jurassic outcrops of Normandy (France). J Vertebr Paleontol 27:73–86CrossRefGoogle Scholar
- Farmer CG, Sanders K (2010) Unidirectional airflow in the lungs of alligators. Science 327:338–340CrossRefPubMedGoogle Scholar
- Feduccia A (1996) The origin and evolution of birds. Yale University Press, New HavenGoogle Scholar
- Feduccia A (2013) Bird origins anew. Auk 130:1–12CrossRefGoogle Scholar
- Forster CA (1999) Gondwanan dinosaur evolution and biogeographic analysis. J Afr Earth Sci 28:169–185CrossRefGoogle Scholar
- Foth C, Rauhut OWM (2017) Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol Biol 17:236CrossRefPubMedPubMedCentralGoogle Scholar
- Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82CrossRefPubMedPubMedCentralGoogle Scholar
- Foth C, Hedrick BP, Ezcurra MD (2016) Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs. PeerJ 4:e1589CrossRefPubMedPubMedCentralGoogle Scholar
- Foth C, Haug C, Haug JT, Tischlinger H, Rauhut OWM (2020) Two of a feather: a comparison of the preserved integument in the juvenile theropod dinosaurs Sciurumimus and Juravenator from the Kimmeridgian Torleite Formation of southern Germany. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamCrossRefGoogle Scholar
- Gauthier JA (1986) Saurischian monophyly and the origin of birds. Memoirs Calif Acad Sci 8:1–55Google Scholar
- Gierlinski G (1997) What type of feather could nonavian dinosaur have, according to an Early Jurassic ichnological evidence from Massachusetts? Przeglad Geologiczny 54:419–422Google Scholar
- Godefroit P, Demuynck H, Dyke GJ, Hu D, Escuillié F, Claeys P (2013a) Reduced plumage and flight ability of a new Jurassic paravian theropod from China. Nat Commun 4:1394CrossRefGoogle Scholar
- Godefroit P, Cau A, Hu D, Escuillié F, Wu W, Dyke GJ (2013b) A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498:359–362CrossRefGoogle Scholar
- Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455CrossRefGoogle Scholar
- Godefroit P, Sinitsa SM, Cincotta A, McNamara ME, Reshetova SA, Dhouailly D (2020) Integumentary structures in Kulindadromeus zabaikalicus, a Basal Neornithischian Dinosaur from the Jurassic of Siberia. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
- Heilmann G (1926) The origin of birds. Witherby, LondonGoogle Scholar
- Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
- Hocknull SA, White MA, Tischler TR, Cook AC, Calleja ND, Sloan T, Elliot DA (2009) New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia. PLoS One 4:e6190CrossRefPubMedPubMedCentralGoogle Scholar
- Holtz TRJ (1994) The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. J Paleontol 68:1100–1117CrossRefGoogle Scholar
- Holtz TR (1996) Phylogenetic taxonomy of the Coelurosauria (Dinosauria: Theropoda). J Paleontol 70:536–538CrossRefGoogle Scholar
- Holtz TRJ (1998) A new phylogeny of the carnivorous dinosaurs. Gaia 15:5–61Google Scholar
- Holtz TRJ, Molnar RE, Currie PJ (2004) Basal Tetanurae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. University of California Press, Berkeley, pp 71–110CrossRefGoogle Scholar
- Hone DWE, Holtz TRJ (2017) A century of spinosaurs—a review and revision of the Spinosauridae with comments on their ecology. Acta Geologica Sinica 91:1120–1132CrossRefGoogle Scholar
- Hou L, Zhou Z, Martin LD, Feduccia A (1995) A beaked bird from the Jurassic of China. Nature 377:616–618CrossRefGoogle Scholar
- Hoyle F, Wickramasinghe C (1985) Archaeopteryx, the primordial bird: a case of fossil forgery. Christopher Davies, SwanseaGoogle Scholar
- Hu D, Hou L, Zhang L, Xu X (2009) A pre- Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643CrossRefPubMedPubMedCentralGoogle Scholar
- Hu D, Clarke JA, Eliason CM, Qiu R, Li Q, Shawkey MD, Zhao C, D’Alba L, Jiang J, Xu X (2018) A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat Commun 9:217CrossRefPubMedPubMedCentralGoogle Scholar
- Huxley TH (1868) On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist 4:66–75Google Scholar
- Ji Q, Currie PJ, Norell MA, Ji S (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
- Kaye TG, Falk AR, Pittman M, Sereno PC, Martin LD, Burnham DA, Gong E, Xu X, Wang Y (2015) Laser-stimulated fluorescence in paleontology. PLoS One 10:e0125923CrossRefPubMedPubMedCentralGoogle Scholar
- Kaye TG, Pittman M, Marugán-Lobón J, Martín-Abad H, Sanz JL, Buscalioni AD (2019) Fully fledged enantiornithine hatchling revealed by laser-stimulated fluorescence supports precocial nesting behavior. Sci Rep 9:5006CrossRefPubMedPubMedCentralGoogle Scholar
- Kellner AWA (2002) A review of avian Mesozoic fossil feathers. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of Dinosaurs. University of California Press, Berkeley, pp 389–404Google Scholar
- Kundrát M (2004) When did theropods become feathered? Evidence for pre-Archaeopteryx feathery appendages. J Exp Zool (MOL DEV EVOL) 302B:355–364CrossRefGoogle Scholar
- Langer MC, Rincón AD, Ramezani J, Solórzano A, Rauhut OWM (2014) New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta Formation, Venezuelan Andes. R Soc Open Sci 1:140184CrossRefPubMedPubMedCentralGoogle Scholar
- Lee Y-N, Barsbold R, Currie PJ, Kobayashi Y, Lee H-J, Godefroit P, Escuillié F, Tsogtbaatar C (2014) Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515:257–260CrossRefPubMedGoogle Scholar
- Lefèvre U, Cau A, Cincotta A, Hu D, Chinsamy A, Escuillié F, Godefroit P (2017) A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci Nat 104:74CrossRefGoogle Scholar
- Li Z, Zhou Z, Wang M, Clarke JA (2014) A new specimen of large-bodied basal Enantiornithine Bohaiornis from the early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J Paleontol 88:99–108CrossRefGoogle Scholar
- Lingham-Soliar T (2003a) The dinosaurian origin of feathers: perspectives from dolphin (Cetacea) collagen fibers. Naturwissenschaften 90:563–567CrossRefPubMedGoogle Scholar
- Lingham-Soliar T (2003b) Evolution of birds: ichthyosaur integumental fibers conform to dromaeosaur protofeathers. Naturwissenschaften 90:428–432CrossRefPubMedGoogle Scholar
- Lingham-Soliar T (2010) Dinosaur protofeathers: pushing back the origin of feathers into the Middle Triassic. J Ornithol 151:193–200CrossRefGoogle Scholar
- Lingham-Soliar T (2012) The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur. J Ornithol 153:699–711CrossRefGoogle Scholar
- Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc R Soc Lond B 274:1823–1829CrossRefGoogle Scholar
- Makovicky PJ, Sues H-D (1998) Anatomy and phylogenetic relationships of the theropod dinosaur Microvenator celer from the Lower Cretaceous of Montana. Am Museum Novitates 3240:1–27Google Scholar
- Makovicky PJ, Norell MA, Clark JM, Rowe TB (2003) Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am Museum Novitates 3402:1–32CrossRefGoogle Scholar
- Maleev EA (1954) Noviy chyeryepoobrazniy yashschyer Mongolii [A new turtle-like reptile from Mongolia]. Priroda 1954:106–108Google Scholar
- Martin LD (1983) The origin and the early radiation of birds. In: Brush AH, Clark GA (eds) Perspectives in ornithology. Cambridge University Press, Cambridge, pp 291–338CrossRefGoogle Scholar
- Martínez RN, Apaldetti C (2017) A late Norian-Rhaetian coelophysid neotheropod (Dinosauria, Saurischia) from the Quebrada Del Barro Formation, northwestern Argentina. Ameghiniana 54:488–505CrossRefGoogle Scholar
- Martin LD, Stewart JD, Whetstone KN (1980) The origin of birds: structure of the tarsus and teeth. Auk 97:86–93Google Scholar
- Maryańska T, Osmólska H, Wolsan M (2002) Avialian status for Oviraptorosauria. Acta Palaeontologica Polonica 47:97–116Google Scholar
- Mayr G (2009) Paleogene fossil birds. Springer, BerlinCrossRefGoogle Scholar
- Mayr G (2010) Response to Lingham-Soliar: Dinosaur protofeathers: pushing back to origin of feathers into the Middle Triassic. J Ornithol 151:523–524CrossRefGoogle Scholar
- Mayr G (2017) Avian evolution. Wiley, ChichesterGoogle Scholar
- Norell MA, Clark JM, Makovicky PJ (2001) Phylogenetic relationships among coelurosaurian theropods. In: Gauthier JA (ed) New perspectives on the origin and early evolution of birds: Proceedings of the international symposium in Honor of John H. Ostrom. Yale University, New Haven, pp 49–67Google Scholar
- Norell MA, Clark JM, Turner AH, Makovicky PJ, Barsbold R, Rowe TB (2006) A new droameosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). Am Museum Novitates 3545:1–51CrossRefGoogle Scholar
- Novas FE (1992) Phylogenetic relationships of the basal dinosaurs, the Herrerasauridae. Palaeontology 35:51–62Google Scholar
- Novas FE (1996) Alvarezsauridae, Cretaceous basal birds from Patagonia and Mongolia. Mem Queensland Mus 39:675–702Google Scholar
- Novas FE (1997) Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. J Vertebr Paleontol 17:137–166CrossRefGoogle Scholar
- Novas FE (1998) Megaraptor namunhuaiquii, gen. et so. nov., a large-clawed, Late Cretaceous theropod from Patagonia. J Vertebr Paleontol 18:4–9CrossRefGoogle Scholar
- Novas FE, Agnolín FL, Ezcurra MD, Porfiri JD, Canale JI (2013) Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretac Res 45:174–215CrossRefGoogle Scholar
- Novas FE, Salgado L, Suárez M, Agnolín FL, Ezcurra MD, Chimento NR, de al Cruz R, Isasi MP, Vargas AO, Rubular-Rogers D (2015) An enigmatic plant-eating theropod from the Late Jurassic period of Chile. Nature 522:331–334CrossRefPubMedGoogle Scholar
- Novas FE, Aranciaga Rolando AM, Agnolín FL (2016) Phylogenetic relationships of the Cretaceous Gondwanan theropods Megaraptor and Australovenator: the evidence afforded by their manual anatomy. Mem of Mus Vic 74:49–61CrossRefGoogle Scholar
- O’Connor JK, Wang X, Chiappe LM, Gao C, Meng Q, Cheng X, Liu J (2009) Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J Vertebr Paleontol 29:188–204CrossRefGoogle Scholar
- O’Connor JK, Chiappe LM, Bell A (2011a) Pre-modern birds: avian divergences in the Mesozoic. In: Dyke GJ, Kaiser GW (eds) Living dinosaurs: the evolutionary history of modern birds. John Wiley, Chichester, pp 39–119CrossRefGoogle Scholar
- O’Connor JK, Chiappe LM, Gao C, Zhao B (2011b) Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56:463–475CrossRefGoogle Scholar
- O’Connor JK, Zhang Y, Chiappe LM, Meng Q, Quanguo L, Di L (2013) A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization. J Vertebr Paleontol 33:1–12CrossRefGoogle Scholar
- O’Connor JK, Wang M, Hu H (2016) A new ornithuromorph (Aves) with an elongate rostrum from the Jehol Biota, and the early evolution of rostralization in birds. J Syst Palaeontol 14:939–948CrossRefGoogle Scholar
- Ortega F, Escaso F, Sanz JL (2010) A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. Nature 467:203–206CrossRefGoogle Scholar
- Ostrom JH (1969a) A new theropod dinosaur from the Lower Cretaceous of Montana. Postilla 128:1–17Google Scholar
- Ostrom JH (1969b) Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum Nat Hist Bull 30:1–165Google Scholar
- Ostrom JH (1970) Archaeopteryx: notice of a ‘new’ specimen. Science 170:537–538CrossRefPubMedGoogle Scholar
- Ostrom JH (1972) Description of the Archaeopteryx specimen in the Teyler Museum, Haarlem. Proceedings Koninklijk Nederlandse Akademie van Wetenschappen, B 75:289–305Google Scholar
- Ostrom JH (1973) The ancestry of birds. Nature 242:136CrossRefGoogle Scholar
- Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linnean Soc 8:91–182CrossRefGoogle Scholar
- Owen R (1863) On the Archaeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solenhofen. Philos Trans R Soc Lond 153:33–47Google Scholar
- Paul GS (1984) The segnosaurian dinosaurs: relics of the prosauropod-ornithischian transition. J Vertebr Paleontol 4:507–515CrossRefGoogle Scholar
- Paul GS (2002) Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds. The John Hopkins University Press, BaltimoreGoogle Scholar
- Perle A (1979) Segnosauridae - a new family of theropods from the Late Cretaceous of Mongolia. Trudy Sovmestnay Sovetsko-Mongolskay Paleontologiyeskay Ekspeditsiy 8:45–55Google Scholar
- Perle A (1982) A hind limb of Therizinosaurus from the Upper Cretaceous of Mongolia. Probl in Mongolian Geol 5:94–98Google Scholar
- Perle A, Chiappe LM, Barsbold R, Clark JM, Norell MA (1994) Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. Am Mus Novit 3105:1–19Google Scholar
- Pol D, Rauhut OWM (2012) A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. Proc R Soc B 279:3170–3175CrossRefPubMedGoogle Scholar
- Porfiri JD, Novas FE, Calvo JO, Agnolín FL, Ezcurra MD, Cerda IA (2014) Juvenile specimen of Megaraptor (Dinosauria, Theropoda) sheds light about tyrannosauroid radiation. Cretac Res 51:35–55CrossRefGoogle Scholar
- Prado GMEM, Anelli LE, Petri S, Romero GR (2016) New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil. PeerJ 4:e1916CrossRefPubMedPubMedCentralGoogle Scholar
- Prum RO (2002) Perspectives in ornithology. Why ornithologist should care about the theropod origin of birds. Auk 119:1–17CrossRefGoogle Scholar
- Prum RO (2003) Are current critiques of the theropod origin of birds science? Rebuttal to Feduccia (2002). Auk 120:550–561CrossRefGoogle Scholar
- Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Moriarty Lemmon E, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573CrossRefPubMedGoogle Scholar
- Rauhut OWM (1998) Elaphrosaurus bambergi and the early evolution of theropod dinosaurs. J Vertebr Paleontol 18:71AGoogle Scholar
- Rauhut OWM (2003) The interrelationships and evolution of basal theropod dinosaurs. Spec Pap Palaeontol 69:1–213Google Scholar
- Rauhut OWM, Pol D (2019) Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci Rep 9:18826CrossRefPubMedPubMedCentralGoogle Scholar
- Rauhut OWM, Carrano MT (2016) The theropod dinosaur Elaphrosaurus bambergi Janensch, 1920, from the Late Jurassic of Tendaguru, Tanzania. Zool J Linnean Soc 178:546–610CrossRefGoogle Scholar
- Rauhut OWM, Xu X (2005) The small theropod dinosaurs Tugulusaurus and Phaedrolosaurus from the Early Cretaceous of Xinjiang, China. J Vertebr Paleontol 25:107–118CrossRefGoogle Scholar
- Rauhut OWM, Milner AC, Moore-Fay S (2010) Cranial osteology and phylogenetic position of the theropod dinosaur Proceratosaurus bradleyi (Woodward, 1910) from the Middle Jurassic of England. Zool J Linnean Soc 158:155–195CrossRefGoogle Scholar
- Rauhut OWM, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proc Natl Acad Sci USA 109:11746–11751CrossRefPubMedPubMedCentralGoogle Scholar
- Rauhut OWM, Hübner TR, Lanser K-P (2016) A new megalosaurid theropod dinosaur from the late Middle Jurassic (Callovian) of north-western Germany: implications for theropod evolution and faunal turnover in the Jurassic. Palaeontologia Electronica 19:26AGoogle Scholar
- Rauhut OWM, Tischlinger H, Foth C (2019) A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8:e43789CrossRefPubMedPubMedCentralGoogle Scholar
- Rietschel S (1985) Feathers and wings of Archaeopteryx and the question of her fligth ability. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 251–260Google Scholar
- Russell DA, Dong Z (1993) The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People’s Republic of China. Can J Earth Sci 30:2107–2127CrossRefGoogle Scholar
- Schachner ER, Hutchinson JR, Farmer CG (2013) Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 1:e60CrossRefPubMedPubMedCentralGoogle Scholar
- Schweitzer MH, Watt JA, Avci R, Knapp LW, Chiappe LM, Norell MA, Marshall M (1999) Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti. J Exp Zool (MOL DEV EVOL) 285:146–157CrossRefGoogle Scholar
- Schweitzer MH, Avci R, Collier T, Goodwin MB (2008) Microscopic, chemical and molecular methods for examining fossil perservation. C R Palevol 7:159–184CrossRefGoogle Scholar
- Senter P (2007) A new look at the phylogeny of Coelurosauria (Dinosauria: Theropoda). J Syst Palaeontol 5:429–463CrossRefGoogle Scholar
- Sereno PC (1997) The origin and evolution of dinosaurs. Annu Rev Earth Planetary Sci 25:435–489CrossRefGoogle Scholar
- Sereno PC (1998) A rationale for phylogenetic definitions with application to the higher-level taxonomy of Dinosauria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 210:41–83CrossRefGoogle Scholar
- Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147CrossRefPubMedGoogle Scholar
- Sereno PC, Martinez RN, Wilson JA, Varricchio DJ, Alcober OA, Larsson HCE (2008) Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3:e3303CrossRefPubMedPubMedCentralGoogle Scholar
- Smith ND, Makovicky PJ, Hammer WR, Currie PJ (2007) Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zool J Linnean Soc 151:377–421CrossRefGoogle Scholar
- Smith NA, Chiappe LM, Clarke JA, Edwards SV, Nesbitt SJ, Norell MA, Stidham TA, Turner AH, van Tuinen M, Vinther J, Xu X (2015) Rhetoric vs. reality: a commentary on “Bird origins anew” by A. Feduccia. Auk 132:467–480CrossRefGoogle Scholar
- Smithwick F, Vinther J (2020) Review on color patterns of fossil feathers. In: Foth C, Rauhut OWM (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
- Smithwick FM, Mayr G, Saitta ET, Benton MJ, Vinther J (2017) On the purported presence of fossilized collagen fibres in an ichthyosaur and a theropod dinosaur. Palaeontology 60:409–422CrossRefGoogle Scholar
- Stromer E (1915) Ergebnisse der Forschungsreisen Prof. Stromers in den Wüsten Ägyptens. II Wirbeltier-Reste der Baharîje-Stufe (unterstes Cenoman). 3. Das Original des Theropoden Spinosaurus aegyptiacus nov. gen., nov. spec. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 28:1–32Google Scholar
- Tarsitano S, Hecht MK (1980) A reconsideration of the reptilian relationships of Archaeopteryx. Zool J Linnean Soc 69:149–182CrossRefGoogle Scholar
- Therrien F, Henderson DM (2007) My theropod is bigger than yours...or not: estimating body size from skull length in theropods. J Vertebr Paleontol 27:108–115CrossRefGoogle Scholar
- Turner AH, Makovicky PJ, Norell MA (2012) A review of dromaeosaurid systematics and paravian phylogeny. Bull Am Museum Nat Hist 371:1–206CrossRefGoogle Scholar
- von Meyer H (1861a) Vogel-Federn und Palpipes priscus von Solnhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1861:561Google Scholar
- von Meyer H (1861b) Archaeopteryx lithographica und Pterodactylus. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1861:678–679Google Scholar
- Wagner A (1861) Beiträge zur Kenntnis der urweltlichen Fauna des lithographischen Schiefers. 2. Abt. Schildkröten und Saurier. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 9:67–124Google Scholar
- Wagner A (1862) On a new fossil reptile supposed to be furnished with feathers. Ann Mag Nat Hist 9:261–267CrossRefGoogle Scholar
- Wang M, Zhou Z (2017) The evolution of birds with implications from new fossil evidences. In: Maina JN (ed) The biology of the avian respiratory system. Springer, Cham, pp 1–26Google Scholar
- Wang M, Zheng X, O’Connor JK, Lloyd GT, Wang X, Wang Y, Zhang X, Zhou Z (2015) The oldest record of Ornithuromorpha from the early cretaceous of China. Nat Commun 6:6987CrossRefPubMedPubMedCentralGoogle Scholar
- Wang S, Stiegler J, Amiot R, Wang X, Du G, Clark JM, Xu X (2017) Extreme ontogenetic changes in a ceratosaurian theropod. Curr Biol 27:1–5CrossRefGoogle Scholar
- Wang M, O’Connor JK, Xu X, Zhou Z (2019) A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569:256–259CrossRefGoogle Scholar
- Wellnhofer P (1974) Das fünfte Skelettexemplar von Archaeopteryx. Palaeontographica Abt. A 147:169–216Google Scholar
- Wellnhofer P (2008) Archaeopteryx: Der Urvogel von Solnhofen. Verlag Dr Friedrich Pfeil, MünchenGoogle Scholar
- Witmer LM (2002) The debate on avian ancestry: phylogeny, function, and fossils. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 3–30Google Scholar
- Xing L, McKellar RC, Wang M, Bai M, O’Connor JK, Benton MJ, Zhang J, Wang Y, Tseng K, Lockley MG, Li G, Zhang W, Xu X (2016a) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 7:12089CrossRefPubMedPubMedCentralGoogle Scholar
- Xing L, McKellar RC, Xu X, Li G, Bai M, Persons WS IV, Miyashita T, Benton MJ, Zhang J, Wolfe AP, Yi Q, Tseng K, Ran H, Currie PJ (2016b) A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr Biol 26:1–9CrossRefGoogle Scholar
- Xing L, McKellar RC, O’Connor JK, Niu K, Mai H (2019) A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber. Sci Rep 9:15513CrossRefPubMedPubMedCentralGoogle Scholar
- Xu X (2006) Feathered dinosaurs from China and the evolution of major avian characters. Integr Zool 1:4–11CrossRefGoogle Scholar
- Xu X (2020) Filamentous integuments in nonavialan theropods and their kin: advances and future perspectives for understanding the evolution of feathers. In: Foth C, OWM R (eds) The evolution of feathers: from their origin to the present. Springer, ChamGoogle Scholar
- Xu X, Fucheng F (2005) A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 92:173–177CrossRefPubMedPubMedCentralGoogle Scholar
- Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329Google Scholar
- Xu X, Pol D (2014) Archaeopteryx, paravian phylogenetic analyses, and the use of probability-based methods for palaeontological datasets. J Syst Palaeontol 12:323–334CrossRefGoogle Scholar
- Xu X, Wang X, Wu X (1999a) A dromaeosaurid dinosaur with filamentous integument from the Yixian Formation of China. Nature 401:262–266CrossRefGoogle Scholar
- Xu X, Tang Z, Wang X (1999b) A therizinosauroid dinosaur with integumentary structures from China. Nature 399:350–354CrossRefGoogle Scholar
- Xu X, Zhou Z, Prum RO (2001) Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410:200–204CrossRefGoogle Scholar
- Xu X, Norell MA, Wang X, Makovicky PJ, Wu X (2002) A basal troodontid from the Early Cretaceous of China. Nature 415:780–784CrossRefPubMedGoogle Scholar
- Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340CrossRefGoogle Scholar
- Xu X, Tan Q, Wang J, Zhao X, Tan L (2007) A gigantic bird-like dinosaur from the Late Cretaceous of China. Nature 447:844–847CrossRefGoogle Scholar
- Xu X, Clark JM, Mo J, Choiniere JN, Forster CA, Erickson GM, Hone DWE, Sullivan C, Eberth DA, Nesbitt SJ, Zhao Q, Hernandez R, Jia C, Han F, Guo Y (2009) A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459:940–944CrossRefPubMedGoogle Scholar
- Xu X, Ma Q, Hu D (2010) Pre-Archaeopteryx coelurosaurian dinosaurs and their implications for understanding avian origins. Chin Sci Bull 55:3971–3977CrossRefGoogle Scholar
- Xu X, You H, Du K, Han F (2011) An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475:465–470CrossRefPubMedPubMedCentralGoogle Scholar
- Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484:92–95CrossRefGoogle Scholar
- Xu X, Zhou Z, Dudley R, Mackem S, Chuong C, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:1253293CrossRefGoogle Scholar
- Xu X, Zheng X, Sullivan C, Wang W, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y (2015) A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521:70–73CrossRefPubMedPubMedCentralGoogle Scholar
- Xu X, Zhou Z, Sullivan C, Wang Y, Ren D (2016) An updated review of the Middle-Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol Sin 90:2229–2243CrossRefGoogle Scholar
- Xu X, Choiniere JN, Tan Q, Benson RBJ, Clark JM, Sullivan C, Zhao Q, Han F, Ma Q, He Y, Wang S, Xing H, Tan L (2018) Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr Biol 28:1–8CrossRefGoogle Scholar
- Zanno LE (2010) A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora). J Syst Palaeontol 8:503–543CrossRefGoogle Scholar
- Zanno LE, Makovicky PJ (2011) Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc Natl Acad Sci USA 108:232–237CrossRefPubMedGoogle Scholar
- Zhang F, Zhou Z, Xu X, Wang X (2002) A juvenil coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89:394–398CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang F, Zhou Z, Xu X, Wang X, Sullivan C (2008) A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–1108CrossRefPubMedPubMedCentralGoogle Scholar
- Zhang Y, O’Connor JK, Di L, Meng Q, Sigurdsen T, Chiappe LM (2014) New information on the anatomy of the Chinese Early Cretaceous Bohaiornithidae (Aves: Enantiornithes) from a subadult specimen of Zhouornis hani. PeerJ 2:e407CrossRefPubMedPubMedCentralGoogle Scholar
- Zheng X, You H, Xu X, Dong Z (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336CrossRefGoogle Scholar
- Zhou Z, Clarke JA, Zhang F (2008) Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J Anat 212:565–577CrossRefPubMedPubMedCentralGoogle Scholar
- Zhou Z, Zhang Z, Li Z (2010) A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc R Soc B 277:219–227CrossRefPubMedGoogle Scholar