Skip to main content

Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11662))

Abstract

The goal of this paper is to predict the micro-architectural parameters of cortical bone such as pore diameter (ϕ) and porosity (ν) from ultrasound attenuation measurements using an artificial neural network (ANN). Slices from a 3-D CT scan of human femur are obtained. The micro-architectural parameters of porosity such as average pore size and porosity are calculated using image processing. When ultrasound waves propagate in porous structures, attenuation is observed due to scattering. Two-dimensional finite-difference time-domain simulations are carried out to obtain frequency dependent attenuation in those 2D structures. An artificial neural network (ANN) is then trained with the input feature vector as the frequency dependent attenuation and output as pore diameter (ϕ) and porosity (ν). The ANN is composed of one input layer, 3 hidden layers and one output layer, all of which are fully connected. 340 attenuation data sets were acquired and trained over 2000 epochs with a batch size of 32. Data was split into train, validation and test. It was observed that the ANN predicted the micro-architectural parameters of the cortical bone with high accuracies and low losses with a minimum R2 (goodness of fit) value of 0.95. ANN approaches could potentially help inform the solution of inverse-problems to retrieve bone porosity from ultrasound measurements. Ultimately, those inverse-problems could be used for the non-invasive diagnosis and monitoring of osteoporosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, H., Zhou, X., Fujita, H., Onozuka, M., Kubo, K.Y.: Age-related changes in trabecular and cortical bone microstructure. Int. J. Endocrinol. 2013, 9 (2013)

    Google Scholar 

  2. Kanis, J.A., Kanis, J.A.: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos. Int. 4, 368 (1994)

    Article  Google Scholar 

  3. Yerramshetty, J., Akkus, O.: Changes in cortical bone mineral and microstructure with aging and osteoporosis. In: Silva, M. (eds.) Skeletal Aging and Osteoporosis. SMTEB, vol. 5, pp. 105–131. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_114

    Google Scholar 

  4. McCalden, R.W., McGlough, J.A., Barker, M.B., Court-Brown, C.M.: Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization and microstructure. J. Bone Jt. Surg. Ser. A 75(8), 1193–1205 (1993)

    Article  Google Scholar 

  5. Schaffler, M.B., Burr, D.B.: Stiffness of compact bone: effects of porosity and density. J. Biomech. 21(1), 13–16 (1988)

    Article  Google Scholar 

  6. Sornay-Rendu, E., Munoz, F., Duboeuf, F., Delmas, P.D.: Rate of forearm bone loss is associated with an increased risk of fracture independently of bone mass in postmenopausal women: the OFELY study. J. Bone Miner. Res. 20, 1929 (2005)

    Article  Google Scholar 

  7. Braithwaite, R.S., Col, N.F., Wong, J.B.: Estimating hip fracture morbidity, mortality and costs. J. Am. Geriatr. Soc. 51, 364–370 (2003)

    Article  Google Scholar 

  8. Schuit, S.C.E., et al.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195 (2004)

    Article  Google Scholar 

  9. Mazess, R., Chesnut, C.H., McClung, M., Genant, H.: Enhanced precision with dual-energy x-ray absorptiometry. Calcif. Tissue Int. 51, 14 (1992)

    Article  Google Scholar 

  10. Lewiecki, E.M., Lane, N.E.: Common mistakes in the clinical use of bone mineral density testing. Nat. Clin. Pract. Rheumatol. 4, 667 (2008)

    Article  Google Scholar 

  11. Boutroy, S., Bouxsein, M.L., Munoz, F., Delmas, P.D.: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metabol. 90(12), 6508–6515 (2005)

    Article  Google Scholar 

  12. Wehrli, F.W., Song, H.K., Saha, P.K., Wright, A.C.: Quantitative MRI for the assessment of bone structure and function. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. Vivo 19, 731–764 (2006)

    Article  Google Scholar 

  13. Link, T.M.: Osteoporosis imaging: state of the art and advanced. Radiology 263(1), 3–17 (2012)

    Article  Google Scholar 

  14. Haïat, G., Lhémery, A., Renaud, F., Padilla, F., Laugier, P., Naili, S.: Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. J. Acoust. Soc. Am. 124, 4047 (2017)

    Article  Google Scholar 

  15. Conoir, J.: Multiple scattering in a trabecular bone: influence of the marrow viscosity on the effective properties. J. Acoust. Soc. Am. 113, 2889–2892 (2003)

    Article  Google Scholar 

  16. Litniewski, J., Wojcik, J., Nowicki, A.: Contribution of multiple scattering to the trabecular bone backscatter - dependence on porosity and frequency. In: 2012 IEEE International Ultrasonics Symposium, pp. 1–4 (2012)

    Google Scholar 

  17. Bennamane, A., Boutkedjirt, T.: Theoretical and experimental study of the ultrasonic attenuation in bovine cancellous bone. Appl. Acoust. 115, 50–60 (2017)

    Article  Google Scholar 

  18. Karjalainen, J.P., Töyräs, J., Riekkinen, O., Hakulinen, M., Jurvelin, J.S.: Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. Ultrasound Med. Biol. 35, 1376 (2009)

    Article  Google Scholar 

  19. Mézière, F., Muller, M., Bossy, E., Derode, A.: Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot’s and multiple scattering models. Ultrasonics 54(5), 1146–1154 (2014)

    Article  Google Scholar 

  20. Anderson, C.C., Bauer, A.Q., Holland, M.R., Pakula, M., Laugier, P., Bretthorst, G.L.: Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. J. Acoust. soc. Am. 128, 2940 (2010)

    Article  Google Scholar 

  21. Padilla, F., Laugier, P.: Recent developments in trabecular bone characterization using ultrasound. Curr. Osteoporos. Rep. 3, 64 (2005)

    Article  Google Scholar 

  22. Wear, K.A., et al.: Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro. J. Acoust. Sos. Am. 131, 1605 (2017)

    Article  Google Scholar 

  23. Mohanty, K., Blackwell, J., Egan, T., Muller, M.: Characterization of the lung parenchyma using ultrasound multiple scattering. Ultrasound Med. Biol. 43(5), 993–1003 (2017)

    Article  Google Scholar 

  24. Demi, L., Van Hoeve, W., Van Sloun, R.J.G., Soldati, G., Demi, M.: Determination of a potential quantitative measure of the state of the lung using lung ultrasound spectroscopy. Sci. Rep. 7(1), 5–11 (2017)

    Article  Google Scholar 

  25. Zhang, X., et al.: Lung ultrasound surface wave elastography, no. 1, pp. 4–6 (2016)

    Google Scholar 

  26. Moilanen, P., et al.: Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. J. Acoust. Soc. Am. 122, 1818 (2007)

    Article  Google Scholar 

  27. Nicholson, P.H.F., Moilanen, P., Laugier, P., Timonen, J., Cheng, S., Talmant, M.: Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments. J. Acoust. Soc. Am. 122, 2439 (2007)

    Article  Google Scholar 

  28. Foiret, J., Minonzio, J.G., Chappard, C., Talmant, M., Laugier, P.: Combined estimation of thickness and velocities using ultrasound guided waves: a pioneering study on in vitro cortical bone samples. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(9), 1478–1488 (2014)

    Article  Google Scholar 

  29. Bossy, E., Talmant, M., Laugier, P.: Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J. Acoust. Soc. Am. 115(5 Pt 1), 2314–2324 (2004)

    Article  Google Scholar 

  30. Mandarano-Filho, L.G., Bezuti, M.T., Mazzer, N., Barbieri, C.H.: Influence of cortical bone thickness on the ultrasound velocity. Acta Ortop. Bras. 20(3), 184–190 (2012)

    Article  Google Scholar 

  31. Rose, E.C., Hagenmüller, M., Jonas, I.E., Rahn, B.A.: Validation of speed of sound for the assessment of cortical bone maturity. Eur. J. Orthod. 27, 190–195 (2005)

    Article  Google Scholar 

  32. Bosisio, M.R., Talmant, M., Skalli, W., Laugier, P., Mitton, D.: Apparent Young’s modulus of human radius using inverse finite-element method. J. Biomech. 40(9), 2022–2028 (2007)

    Article  Google Scholar 

  33. Sievänen, H., Cheng, S., Ollikainen, S., Uusi-Rasi, K.: Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos. Int. 12, 399 (2001)

    Article  Google Scholar 

  34. Eneh, C.T.M., Jurvelin, J.S., Töyräs, J., Malo, M.K.H., Afara, I.O.: Porosity predicted from ultrasound backscatter using multivariate analysis can improve accuracy of cortical bone thickness assessment. J. Acoust. Soc. Am. 141, 575 (2017)

    Article  Google Scholar 

  35. Zheng, R., Le, L.H., Sacchi, M.D., Ta, D., Lou, E.: Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections. Phys. Med. Biol. 52, 5855 (2007)

    Article  Google Scholar 

  36. Yousefian, O., Karbalaeisadegh, Y., Banks, H.T., White, R.D., Muller, M.: The effect of pore size and density on ultrasonic attenuation in porous structures with mono-disperse random pore distribution: a two-dimensional in-silico study. J. Acoust. Soc. Am. 144(2), 709–719 (2018)

    Article  Google Scholar 

  37. Yousefian, O., White, R., Banks, H.T., Muller, M.: Ultrasonic attenuation spectroscopy and dispersion characteristics in cortical bone. In: IEEE International Ultrasonics Symposium, IUS (2017)

    Google Scholar 

  38. Geras, K.J., et al.: High-resolution breast cancer screening with multi-view deep convolutional neural networks, pp. 1–9 (2017)

    Google Scholar 

  39. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning, pp. 1–7 (2018)

    Google Scholar 

  40. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. CSBJ 13, 8–17 (2015)

    Article  Google Scholar 

  41. Chen, J.H., Asch, S.M.: Machine learning and prediction in medicine — beyond the peak of inflated expectations. N. Engl. J. Med. 376, 2507 (2017)

    Article  Google Scholar 

  42. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017)

    Article  Google Scholar 

  43. Zhou, B., Zhang, X.: Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography. Ultrasonics 89, 173–177 (2018)

    Article  Google Scholar 

  44. Steele, A.J., Denaxas, S.C., Shah, A.D., Hemingway, H.: Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. Plos One 13, 1–20 (2018)

    Google Scholar 

  45. Bossy, E., Grimal, Q.: Numerical methods for ultrasonic bone characterization. In: Laugier, P., Haïat, G. (eds.) Bone Quantitative Ultrasound, pp. 181–228. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0017-8_8

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by National Institutes of Health grant no. R03EB022743. The authors’ also acknowledge Dr Quentin Grimal, Sorbonne University for providing the high resolution CT scans and Dr Maciej A. Mazurowski, Duke Radiology Dept., for consulting with us during the development of the ANN model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohanty, K., Yousefian, O., Karbalaeisadegh, Y., Ulrich, M., Muller, M. (2019). Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27202-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27201-2

  • Online ISBN: 978-3-030-27202-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics