Skip to main content

A General Framework for Path Convexities

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2019)

Abstract

In this work we deal with the so-called path convexities, defined over special collections of paths. For example, the collection of the shortest paths in a graph is associated with the well-known geodesic convexity, while the collection of the induced paths is associated with the monophonic convexity; and there are many other examples. Besides reviewing the path convexities in the literature, we propose a general path convexity framework, of which most existing path convexities can be viewed as particular cases. Some benefits of the proposed framework are the systematization of the algorithmic study of related problems and the possibility of defining new convexities not yet investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araujo, R.T., Sampaio, R.M., Szwarcfiter, J.L.: The convexity of induced paths of order three. Discrete Math. 44, 109–114 (2013)

    Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  Google Scholar 

  3. Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79, 587–591 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  Google Scholar 

  5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM, Philadelphia (1999)

    Google Scholar 

  6. Cáceres, J., Oellermann, O.R., Puertas, M.L.: Minimal trees and monophonic convexity. Discuss. Math. Graph Theory 32(4), 685–704 (2012)

    Article  MathSciNet  Google Scholar 

  7. Centeno, C.C., Dantas, S., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: Convex partitions of graphs induced by paths of order three. Discrete Math. 12(5), 175–184 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible interval of graphs. Theoret. Comput. Sci. 412, 3693–3700 (2011)

    Article  MathSciNet  Google Scholar 

  9. Centeno, C.C., Dourado, M.C., Szwarcfiter, J.L.: On the convexity of paths of length two in undirected graphs. Electron. Notes Discrete Math. 32, 11–18 (2009)

    Article  MathSciNet  Google Scholar 

  10. Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Math. 206, 91–95 (1999)

    Article  MathSciNet  Google Scholar 

  11. Changat, M., Mathew, J.: Induced path transit function, monotone and Peano axioms. Discrete Math. 286(3), 185–194 (2004)

    Article  MathSciNet  Google Scholar 

  12. Changat, M., Klavzar, S., Mulder, H.M.: The all-paths transit function of a graph. Czechoslovak Mathematic J. 51(2), 439–448 (2001)

    Article  MathSciNet  Google Scholar 

  13. Changat, M., Mulder, H.M., Sierksma, G.: Convexities related to path properties on graphs. Discrete Math. 290(2–3), 117–131 (2005)

    Article  MathSciNet  Google Scholar 

  14. Changat, M., Narasimha-Shenoi, P.G., Mathews, J.: Triangle path transit functions, betweenness and pseudo-modular graphs. Discrete Math. 309(6), 1575–1583 (2009)

    Article  MathSciNet  Google Scholar 

  15. Changat, M., Narasimha-Shenoi, P.G., Pelayo, I.: The longest path transit function of a graph and betweenness. Utilitas Mathematica 82, 111–127 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Chartrand, G., Garry, L., Zhang, P.: The detour number of a graph. Utilitas Mathematica 64, 97–113 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Chartrand, G., Escuadro, H., Zhang, P.: Detour distance in graphs. J. Combin. Math. Combin. Comput. 52, 75–94 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Chepoi, V.: Peakless functions on graphs. Discrete Appl. Math. 73(2), 175–189 (1997)

    Article  MathSciNet  Google Scholar 

  19. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput. 25(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  20. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. Informatique Théorique et Appl. 26, 257–286 (1992)

    Article  MathSciNet  Google Scholar 

  21. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoret. Comput. Sci. 109(1), 49–82 (1993)

    Article  MathSciNet  Google Scholar 

  22. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of Graph Grammars and Computing by Graph Transformations, vol. 1, pp. 313–400 (1997)

    Chapter  Google Scholar 

  23. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  24. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Dourado, M.C., Gimbel, J.G., Kratochvil, J., Protti, F., Szwarcfiter, J.L.: On the computation of the hull number of a graph. Discrete Math. 309, 5668–5674 (2009)

    Article  MathSciNet  Google Scholar 

  26. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to monophonic convexity. Discrete Math. 158, 1268–1274 (2010)

    Article  MathSciNet  Google Scholar 

  27. Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L., Toman, A.: An upper bound on the \(P_3\)-radon number. Discrete Math. 312(16), 2433–2437 (2012)

    Article  MathSciNet  Google Scholar 

  28. Dourado, M.C., Sampaio, R.M.: Complexity aspects of the triangle path convexity. Discrete Appl. Math. 206, 39–47 (2016)

    Article  MathSciNet  Google Scholar 

  29. Dragan, F.F., Nicolai, F., Brandstädt, A.: Convexity and HHD-free graphs. SIAM J. Discrete Math. 12, 119–135 (1999)

    Article  MathSciNet  Google Scholar 

  30. Duchet, P.: Convex sets in graphs, II. Minimal path convexity. J. Comb. Theory Ser. B 44, 307–316 (1988)

    Article  MathSciNet  Google Scholar 

  31. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alg. Disc. Math. 7(3), 433–444 (1986)

    Article  MathSciNet  Google Scholar 

  32. Farber, M., Jamison, R.E.: On local convexity in graphs. Discrete Math. 66, 231–247 (1987)

    Article  MathSciNet  Google Scholar 

  33. Gimbel, J.G.: Some remarks on the convexity number of a graph. Graphs Comb. 19, 357–361 (2003)

    Article  MathSciNet  Google Scholar 

  34. Gutin, G., Yeo, A.: On the number of connected convex subgraphs of a connected acyclic digraph. Discrete Appl. Math. 157(7), 1660–1662 (2009)

    Article  MathSciNet  Google Scholar 

  35. Harary, F.: Convexity in graphs: achievement and avoidance games. Ann. Discrete Math. 20, 323 (1984)

    Google Scholar 

  36. Harary, F., Nieminen, J.: Convexity in graphs. J. Differ. Geom. 16, 185–190 (1981)

    Article  MathSciNet  Google Scholar 

  37. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17(11), 89–95 (1993)

    Article  MathSciNet  Google Scholar 

  38. Haas, R., Hoffmann, M.: Chordless path through three vertices. Theoret. Comput. Sci. 351, 360–371 (2006)

    Article  MathSciNet  Google Scholar 

  39. Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 268–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35843-2_24

    Chapter  MATH  Google Scholar 

  40. Nebeský, L.: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(1), 173–178 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Nielsen, M.H., Oellermann, O.R.: Steiner trees and convex geometries. SIAM J. Discrete Math. 23(2), 680–693 (2011)

    Article  MathSciNet  Google Scholar 

  42. Parker, D.B., Westhoff, R.F., Wolf, M.J.: Two-path convexity in clone-free regular multipartite tournaments. Australas. J. Combin. 36, 177–196 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2

    Book  MATH  Google Scholar 

  44. Parvathy, K.S.: Studies on convex structures with emphasis on convexity in graphs. Ph.D. thesis, Cochin University, Kochi (1995)

    Google Scholar 

  45. Peterin, I.: The pre-hull number and lexicographic product. Discrete Appl. Math. 312, 2153–2157 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Sampathkumar, E.: Convex sets in a graph. Indian J. Pure Appl. Math. 15(10), 1065–1071 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Thorup, M.: All structured programs have small tree width and good register allocation. Inf. Comput. 142(2), 159–181 (1998)

    Article  MathSciNet  Google Scholar 

  48. van de Vel, M.L.J.: Theory of Convex Structures. North Holland, Amsterdam (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uéverton S. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thompson, J.V.C., Nogueira, L.T., Protti, F., Bravo, R.S.F., Dourado, M.C., Souza, U.S. (2019). A General Framework for Path Convexities. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27195-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27194-7

  • Online ISBN: 978-3-030-27195-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics