Abstract
We consider a fluid flow model with infinite buffer. We compute the Laplace-Stieltjes transform of the sojourn time proceeding in two steps. We first compute the stationary distribution of the buffer at arrival instants, using a change of clock. Secondly, we compute the transform of the time spent to empty the buffer. Numerical examples of sojourn time in a fluid flow are finally examined.
Keywords
- Markov-modulated fluid flow
- Sojourn time
- Laplace-Stieljes transform
This is a preview of subscription content, access via your institution.
Buying options





References
Asmussen, S.: Applied Probability and Queues. Springer, New York (2003). https://doi.org/10.1007/b97236
Bean, N.G., O’Reilly, M., Taylor, P.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21(1), 149–184 (2005)
Horvàth, G., Horvàth, I., Almousa, S.A.D., Telek, M.: Numerical inverse Laplace transformation by concentrated matrix exponential distributions. In: Hautphenne, S., O’Reilly, M., Poloni, F. (eds.) Proceedings of the Tenth International Conference on Matrix-Analytic Methods in Stochastic Models, pp. 37–40 (2019). iSBN 978-0-646-99825-1 (Electronic version)
Horváth, G., Telek, M.: Sojourn times in fluid queues with independent and dependent input and output processes. Perform. Eval. 79, 160–181 (2014)
Kobayashi, H., Mark, B.L.: System Modeling and Analysis: Foundations of System Performance Evaluation, 1st edn. Prentice Hall Press, Upper Saddle River (2008)
Latouche, G., Nguyen, G.: Analysis of fluid flow models. Queueing Models Serv. Manage. 1(2), 1–29 (2018). arXiv:1802.04355
Masuyama, H., Takine, T.: Multiclass markovian fluid queues. Queueing Syst. 56(3), 143–155 (2007). https://doi.org/10.1007/s11134-007-9019-8
Ozawa, T.: Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst. 53(4), 203–211 (2006)
Whitt, W.: A unified framework for numerically inverting laplace transforms. INFORMS J. Comput. 18, 408–421 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Deiana, E., Latouche, G., Remiche, MA. (2019). Sojourn Time Distribution in Fluid Queues. In: Phung-Duc, T., Kasahara, S., Wittevrongel, S. (eds) Queueing Theory and Network Applications. QTNA 2019. Lecture Notes in Computer Science(), vol 11688. Springer, Cham. https://doi.org/10.1007/978-3-030-27181-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-27181-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27180-0
Online ISBN: 978-3-030-27181-7
eBook Packages: Computer ScienceComputer Science (R0)