Skip to main content

Sojourn Time Distribution in Fluid Queues

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11688)

Abstract

We consider a fluid flow model with infinite buffer. We compute the Laplace-Stieltjes transform of the sojourn time proceeding in two steps. We first compute the stationary distribution of the buffer at arrival instants, using a change of clock. Secondly, we compute the transform of the time spent to empty the buffer. Numerical examples of sojourn time in a fluid flow are finally examined.

Keywords

  • Markov-modulated fluid flow
  • Sojourn time
  • Laplace-Stieljes transform

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-27181-7_18
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-27181-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003). https://doi.org/10.1007/b97236

    CrossRef  MATH  Google Scholar 

  2. Bean, N.G., O’Reilly, M., Taylor, P.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21(1), 149–184 (2005)

    CrossRef  MathSciNet  Google Scholar 

  3. Horvàth, G., Horvàth, I., Almousa, S.A.D., Telek, M.: Numerical inverse Laplace transformation by concentrated matrix exponential distributions. In: Hautphenne, S., O’Reilly, M., Poloni, F. (eds.) Proceedings of the Tenth International Conference on Matrix-Analytic Methods in Stochastic Models, pp. 37–40 (2019). iSBN 978-0-646-99825-1 (Electronic version)

    Google Scholar 

  4. Horváth, G., Telek, M.: Sojourn times in fluid queues with independent and dependent input and output processes. Perform. Eval. 79, 160–181 (2014)

    CrossRef  Google Scholar 

  5. Kobayashi, H., Mark, B.L.: System Modeling and Analysis: Foundations of System Performance Evaluation, 1st edn. Prentice Hall Press, Upper Saddle River (2008)

    Google Scholar 

  6. Latouche, G., Nguyen, G.: Analysis of fluid flow models. Queueing Models Serv. Manage. 1(2), 1–29 (2018). arXiv:1802.04355

  7. Masuyama, H., Takine, T.: Multiclass markovian fluid queues. Queueing Syst. 56(3), 143–155 (2007). https://doi.org/10.1007/s11134-007-9019-8

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Ozawa, T.: Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst. 53(4), 203–211 (2006)

    CrossRef  MathSciNet  Google Scholar 

  9. Whitt, W.: A unified framework for numerically inverting laplace transforms. INFORMS J. Comput. 18, 408–421 (2006)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Deiana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Deiana, E., Latouche, G., Remiche, MA. (2019). Sojourn Time Distribution in Fluid Queues. In: Phung-Duc, T., Kasahara, S., Wittevrongel, S. (eds) Queueing Theory and Network Applications. QTNA 2019. Lecture Notes in Computer Science(), vol 11688. Springer, Cham. https://doi.org/10.1007/978-3-030-27181-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27181-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27180-0

  • Online ISBN: 978-3-030-27181-7

  • eBook Packages: Computer ScienceComputer Science (R0)