Skip to main content

Phytohormones in the Modulation of Plant Cellular Response to Stress

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense
  • 900 Accesses

Abstract

Brassinosteroids (BRs) are important class of steroidal hormones that play critical roles in monitoring broad spectrum of plant growth and developmental processes. The maintenance and regulation of endogenous level of BR is important for different biological functions in plant, including cell division, cell elongation, vascular-differentiation, senescence, reproduction photomorphogenesis, and seed germination as well as respond to various abiotic and biotic stresses. Recent studies highlighted the importance of plant BR homeostasis as a critical step in the establishment of plant immunity. In this chapter, we review the recent progress in deciphering the immune-regulatory role of plant hormones, with a special focus on the cellular components and BR hormone signaling involved in regulation of plant defense. We will also discuss the possible approaches of manipulating BR hormone homeostasis to enhance crop resistance to pathogen as well as other abiotic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M, Ito SI, Tran LP (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138

    Article  CAS  Google Scholar 

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LP (2017a) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36:1009–1025

    Article  CAS  Google Scholar 

  • Abdelrahman M, Suzumura N, Mitoma M, Matsuo S, Ikeuchi T, Mori M et al (2017b) Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Sci Rep 7:2608

    Google Scholar 

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LP (2018a) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 41:1972–1983

    CAS  PubMed  Google Scholar 

  • Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LP (2018b) Genome editing using CRISPR/Cas9–targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 131:31–36

    Article  CAS  Google Scholar 

  • Abdelrahman M, Mitoma M, Ikeuchi T, Mori M et al (2018c) Differential gene expression analysis and SNP/InDel marker discovery in resistant wild Asparagus kiusianus and susceptible A. officinalis in response to Phomopsis asparagi infection. Data Brief 21:2117–2121

    Article  Google Scholar 

  • Abdelrahman M, Hirata S, Sawada Y, Hirai MY, Sato S, Hirakawa H, Mine Y, Tanaka K, Shigyo M (2019) Widely targeted metabolome and transcriptome landscapes of Allium fistulosumA. cepa chromosome addition lines revealed a flavonoid hot spot on chromosome 5A. Sci Rep 9:3541

    Google Scholar 

  • Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308

    Article  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning: ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dang JL, Chorya J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55:257–286

    Article  CAS  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    Article  CAS  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  Google Scholar 

  • Chinchilla D, Shan L, He P, de Vries S, Kemmerling B (2009) One for all: the receptor-associated kinase BAK1. Trends Plant Sci 10:535–541

    Article  Google Scholar 

  • Choudhary SP, Yu J-Q, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151

    Article  Google Scholar 

  • Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Clouse SD, Zurek D (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity, & applications. American Chemical Society, Washington, DC, pp 122–140

    Chapter  Google Scholar 

  • Clouse SD, Hall AF, Langford M, McMorris TC, Baker ME (1993) Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. J. Plant Growth Reg 12:61–66

    Article  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    Article  CAS  Google Scholar 

  • Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60

    Article  CAS  Google Scholar 

  • Cutler HG (1991) Brassinosteroids through the looking glass. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity, & applications. American Chemical Society, Washington, DC, pp 334–345

    Chapter  Google Scholar 

  • De Bruyne L, Höfte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943–959

    Article  Google Scholar 

  • De Vleesschauwer D, Gheysen G, Höfte M (2013) Hormone defense networking in rice: tales from a different world. Trends Plant Sci 10:555–565

    Article  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 20:38–47

    Article  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  CAS  Google Scholar 

  • Han YJ, Kim YS, Hwang OJ, Roh J, Ganguly K, Kim SK, Hwang I, Kim JI (2017) Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS ONE 12:e0187378

    Article  Google Scholar 

  • Hauvermale AL, Ariizumi T, Steber CM (2012) Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol 160:83–92

    Article  CAS  Google Scholar 

  • Jaillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17:642–645

    Article  CAS  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19:870–882

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    Article  CAS  Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309

    Article  CAS  Google Scholar 

  • Kempel A, Schädler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci U S A 5(108):5685–5689

    Article  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  Google Scholar 

  • Lozano-Durán R, Zipfel C (2015) Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20:12–19

    Article  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:496–501

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  Google Scholar 

  • Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M et al (2013) Identification of rice Allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 74:226–238

    Article  CAS  Google Scholar 

  • Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298

    Article  CAS  Google Scholar 

  • Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6:950

    Article  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    Article  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  Google Scholar 

  • Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131

    Article  CAS  Google Scholar 

  • Valls M, Genin S, Boucher C (2006) Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2:e82

    Article  Google Scholar 

  • Van der Ent S, Pieterse CMJ (2012) Ethylene: multitasker in plant–attacker interactions. In: McManus MT (ed) Annual plant reviews: the plant hormone ethylene. Blackwell Publishing, Oxford, UK, pp 343–377

    Google Scholar 

  • Vert G (2008) Plant signaling: brassinosteroids, immunity and effectors are BAK. Curr Biol 18:R963–R965

    Article  CAS  Google Scholar 

  • Wang ZY (2012) Brassinosteroids modulate plant immunity at multiple levels. Proc Natl Acad Sci U S A 109:7–8

    Article  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  Google Scholar 

  • Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10:402–413

    Article  CAS  Google Scholar 

  • Yokota T, Ogino Y, Suzuki H, Takahashi N, Saimoto H, Fujioka S, Sakurai A (1991) Metabolism and biosynthesis of brassinosteroids. In: Cutler H, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity, & applications. American Chemical Society, Washington, DC, pp 86–96

    Chapter  Google Scholar 

  • Yu MH, Zhao ZZ, He JX (2018) Brassinosteroid signaling in plant–microbe tnteractions. Int J Mol Sci 19:4091

    Article  Google Scholar 

  • Zhu J-Y, Sae-Seaw J, Wang Z-Y (2013a) Brassinosteroid signalling. Development 140:1615–1620

    Article  CAS  Google Scholar 

  • Zhu W, Wang H, Fujioka S, Zhou T, Tian H, Tian W, Wang X (2013b) Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Mol Plant 6:546–558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abdelrahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M. (2019). Phytohormones in the Modulation of Plant Cellular Response to Stress. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_6

Download citation

Publish with us

Policies and ethics