Skip to main content

Plant–Microbe Interaction: Gene-to-Metabolite Network

  • Chapter
  • First Online:
Book cover Bioactive Molecules in Plant Defense

Abstract

Plants and microbes interact with one another in a beneficial/neutral or unfavorable manner. These plant–microbe associations affect plant physiological processes, where plants maintain balances between plant fitness costs and defense responses. For the establishment of effective plant–microbe relationship/invasion, a microbe has to first pass through the plant preformed barriers and defense machineries. To limit the microbial entry and pathogen propagation or kill pathogens, plant cells trigger immune response. Plant immune signaling consists of two defense cascades: microbe/pathogen-associated molecular pattern (MAMP/PAMP)-triggered immunity (MTI/PTI) and effector-triggered immunity (ETI). Both MTI/PTI and ETI networks comprise of structurally and functionally diverse genes, proteins, and/or small molecules that are tightly regulated via feedback loop(s). The signaling cascade involves number of events such as ion fluxes, mitogen-activated protein kinases (MAPKs), biosynthesis/regulation of plant hormones, calcium protein kinase, lipids, proteins, transcriptional programming, stomatal closure, callose deposition, lignification, along with calcium burst and generation of reactive oxygen species. The present chapter addresses plant and microbe metabolites with pivotal roles in plant–microbe interactions, plant perception systems for pathogen recognition, and how these defense molecules interact to activate defense networks in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signaling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Dean JFD, Anderson JD (1990) An ethylene biosynthesis inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv xanthi leaves. Plant Physiol 94:1849–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basse CW, Fath A, Boller T (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268(20):14724–14731

    CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 107(20):9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camejo D, Guzman-Cedeno A, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem 103:10–23

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124(4):489–499

    Article  CAS  PubMed  Google Scholar 

  • Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:2967–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong JJ, Hahn MG (1991) A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell 3(2):37–147

    Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Choi S-M, Song H-R, Han S-K, Han M, Kim C-Y, Park J et al (2012) HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71:135–146

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes RW, Zhou JM (2010) Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7:164–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: From pathogen perception to robust defense. Annu Review Plant Biol 66:487–511

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • de Boer AH, van Kleeff PJ, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250(2):425–440

    Article  CAS  PubMed  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20:91–101

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Denarie J, Debelle F, Prome J-C (1996) Rhizobium lipo-chitooligosaccharide Nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Elmayan T, Fromentin J, Riondet C, Alcaraz G, Blein JP, Simon-Plas F (2007) Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells. Plant, Cell Environ 30:722–732

    Article  CAS  Google Scholar 

  • Farmer PK, Choi JH (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim Biophys Acta 1434:6–17

    Article  CAS  PubMed  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidosis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17(9):2601–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138:611–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  Google Scholar 

  • Gosline SJ, Oh C, Fraenkel E (2015) SAMNetWeb: identifying condition-specific networks linking signaling and transcription. Bioinformatics 31(7):1124–1126

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M et al (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  CAS  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP et al (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334(6061):1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-de-Diego R, Tarazona S, Martinez-Mira C, Balzano-Nogueira L, Furio-Tari P, Pappas GJ Jr et al (2018) PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res 46(W1):W503–W509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH (2003) Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217:767–775

    Article  CAS  PubMed  Google Scholar 

  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9:1387

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahn T, Fuglsang AT, Olsson A, Bruntrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG, Larsson C (1997) The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase. Plant Cell 9:1805–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeworutzki E, Roelfsema MR, Anschutz U, Krol E, Elzenga JT, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant J 62:367–378

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH Oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalachova T, Iakovenko O, Kretinin S, Kravets V (2013) Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiol Biochem 66:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27(20):2917–2918

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228(6):977–987

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28(3):373–380

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F (2018) Plant immune signaling from a network perspective. Plant Sci 276:14–21

    Article  CAS  PubMed  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105(19):7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BP, Albrecht C, de Vries SC, Hirt H, Nurnberger T (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17(13):1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S et al (2005) Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Qu N, Gao M, Zhang Z, Ding X, Yang F, Li Y, Dong OX, Chen S, Li X, Zhang Y (2012) The MEKK1-MKK1/MKK2-MPK4 kinase kinase kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase in Arabidopsis. Plant Cell 24(5):2225–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutmon M, van Iersel MP, Bohler A, Kelder T, Nunes N, Pico AR, Evelo CT (2015) PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol 11(2):e1004085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyungseok P, Kloepper J, Ryu C (2008) Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol 18:1095–1100

    Google Scholar 

  • Lee S-W, Han S-W, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103:18395–18400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Toth K, Cao Y, Tanaka K, Espinoza C, Stacey G (2014) Lipochitooligosaccharide recognition: an ancient story. New Phytol 204:289–296

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009) RIN4 functions with plasma membrane H+−ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7:e1000139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Li J, Ao Y, Qu J, Li Z, Su J et al (2012) Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longabaugh WJR, Davidson EH, Bolouri H (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789(4):363–374

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Duran R, Bourdais G, He SY, Robatzek S (2014) The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol 202:259–269

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg Ben JJ, Chin-A-Woeng TFC, Bloemberg Guido V (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Pant G, Bhavnasi YK, Blanchard SG, Brouwer C (2017) Pathview web: user friendly pathway visualization and data integration. Nucleic Acids Res 175:1292–1302

    Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16(5):554–560

    Article  CAS  PubMed  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  CAS  Google Scholar 

  • Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J, Moore J et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nennstiel D, Scheel D, Nürnberger T (1998) Characterization and partial purification of an oligopeptide elicitor receptor from parsley (Petroselinum crispum). FEBS Lett 431(3):405–410

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U, Kannaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S et al (2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commun 3:926

    Article  PubMed  CAS  Google Scholar 

  • Oh CS, Martin GB (2011) Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 286:14129–14136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh CS, Pedley KF, Martin GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. Plant Cell 22:260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Paquette SM, Leinonen K, Longabaugh WJR (2016) BioTapestry now provides a web application and improved drawing and layout tools. F1000Research 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898

    Article  CAS  PubMed  Google Scholar 

  • Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D (2017) Advances on plant-pathogen interactions from molecular toward systems biology perspectives. Plant J 90:720–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pilalis E, Chatziioannou A, Thomasset B, Kolisis F (2011) An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnol Bioeng 108:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  CAS  PubMed  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Adame-Alvarez RM, Acosta-Gallegos JA, Heil M, Flynn D (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260

    Article  CAS  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signaling and early signaling elements during defense responses to microbe- or damage-associated molecular patterns. Plant J 68:100–113

    Article  CAS  PubMed  Google Scholar 

  • Reddy PM, Rendon-Anaya M, de los Dolores Soto del Rio M (2007) Flavonoids as signaling molecules and regulators of root nodule development. Dyn Soil Dyn Plant 1:83–94

    Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu S-H, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities Plant Mol Biol 64(5):539–547

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16(6):1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1808–1819

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Tsuda K, Wang L, Coller J, Watanabe Y, Glazebrook J, Katagiri F (2010) Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 6:e1001011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheer JM, Ryan CA (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Hernández-reyes C, Samans B, Stein E, Neumann C, Schikora M et al (2014) N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z-Q, Xue J-Y, Wu P, Zhang Y-M, Wu Y, Hang Y-Y, Wang B, Chen J-Q (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Lee SM, Ryu CM (2018) Microbe-induced plant volatiles. New Phytol 220:684–691

    Article  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y et al (2010) Two Lys M receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64(204–214):10

    Google Scholar 

  • Shinya T, Nakagawa T, Kaku H, Shibuya N (2015) Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol 26:64–71

    Article  CAS  PubMed  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132(2):530–543

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Wang H, Zhu R et al (2014) iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics 30(5):7379

    Article  CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 21:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Larsen PB, van der Does D, van Himbergen JA, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58(14):3905–3914

    Article  CAS  PubMed  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53(5):763–775

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Wachter A, Beissbarth T (2015) pwOmics: an R package for pathway-based integration of time-series omics data using public database knowledge. Bioinformatics 31(18):3072–3074

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    Article  CAS  PubMed  Google Scholar 

  • Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D (2010) The type III effector HopF2 Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA 107:2349–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrzodek C, Johannes E, Buchel F, Zell A (2012) InCroMAP: Integrated analysis of cross-platform microarray and pathway data. Bioinformatics 29(4):506–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S (2017) NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci USA 114:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci USA 103(26):10104–10109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Cheung CYM, Poolman MG, Hilbers PAJ, van Riel NAW (2016) A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. Plant J 85:289–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, WangC Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF et al (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Chadha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chadha, S. (2019). Plant–Microbe Interaction: Gene-to-Metabolite Network. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_5

Download citation

Publish with us

Policies and ethics