Skip to main content

Plant Nutritional Deficiency and Its Impact on Crop Production

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Nutritional imbalances in plants influence their responses and defense mechanisms against abiotic stress, pests, and diseases, ultimately impacting crop production. Normal functioning and growth of the plant are affected due to insufficient availability of an essential nutrient(s). Plants have developed highly complex and specialized nutrient sensing and signaling systems to respond to varying nutrient availability in the soil. Interaction of nutritional status and complex signaling mechanisms play a crucial role in plant’s tolerance against diseases and pests. The potential role of deficiency or excess nutrients in plant’s defense against pest and diseases and nutrient sensing and signaling mechanisms in plants is discussed in this chapter. These insights will lead to the development of strategies for a long-term sustainable nutrient management and improved nutrient use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelrahman M, El-Sayed MA, Hashem A, AbdAllah EF, Alqarawi A, Burritt DJ, Tran LP (2018) Metabolomics and transcriptomics in legumes under phosphate deficiency in relation to nitrogen fixation by root nodules. Fronteirs in Plant Sci 9:922

    Article  Google Scholar 

  • Abel S (2017) Phosphate scouting by root tips. Curr Opin Plant Biol 39:168–177

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell Environ 28:500–512

    Article  CAS  Google Scholar 

  • Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras-López O, Tamayo KP, Aceituno F, Gómez I, Ruffel S, Lejay L et al (2014) Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. Plant J 80:1–13

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ (2005) Nutrient sensing and signaling in plants: Potassium and Phosphorus. Adv Bot Res, pp 209–257

    Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF, Kochiant LV, Lucasf WJ (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  CAS  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  PubMed  Google Scholar 

  • Aung K (2006) pho2, a Phosphate Overaccumulator, ss caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schroder I, Al-Karadaghi S, Willows RD, Hansson M (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell Online 18:3606–3616

    Article  CAS  Google Scholar 

  • Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon JM, Creff A, Bissler M, Brouchoud C, Hagège A, et al (2017) Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun. https://doi.org/10.1038/ncomms15300

  • Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-gignalingpathway in Plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na+/H Antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris L. Plant Physiol 78:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zazímalová E et al (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1:2–9

    Article  CAS  Google Scholar 

  • Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A et al (2016) Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol 172:1237–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler MW, Cliff MJ, Waltho JP, Blackburn GM (2010) Why did Nature select phosphate for its dominant roles in biology? New J Chem 34:784

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    Article  CAS  PubMed  Google Scholar 

  • Brunetto G, Bastos de Melo GW, Toselli M, Quartieri M, Tagliavini M (2015) The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev Bras Frutic 37:1089–1104

    Article  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cao J, Cheng C, Yang J, Wang Q (2015) Pathogen infection drives patterns of nutrient resorption in citrus plants. Sci Rep 5:14675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen ML, Gil E, Puga MI, Bligny R, Nussaume L, Geldner N et al (2015) ESCRT-III-associated protein ALIX mediates high-affinity phosphate transporter trafficking to maintain phosphate homeostasis in Arabidopsis. Plant Cell 27:2560–2581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E et al (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF et al (2015) The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. Plant Cell 27:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou TJ, Lin S (2011) Signaling network in sensing phosphate availability in plants. Ann Rev Plant Biol 62:185–206

    Article  CAS  Google Scholar 

  • Crawfors NM, Glass ADM (1998) Crawford & glass. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: From salt stress to signaling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    Article  CAS  PubMed  Google Scholar 

  • Dolan L (2013) Pointing PINs in the right directions: a potassium transporter is required for the polar localization of auxin efflux carriers. New Phytol 197:1027–1028

    Article  CAS  PubMed  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Dreyer I, Porée F, Schneider A, Mittelstädt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roebert B (2004) Assembly of plant Shaker-like Koutchannels requires two distinct sites of the channel α-subunit. Biophys J 87:858–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duby G, Hosy E, Fizames C, Alcon C, Costa A, Sentenac H, Thibaud JB (2008) AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J 53:115–123

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci 49:684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erel R, Yermiyahu U, Yasuor H, Chamus DC, Schwartz A, Ben-Gal A, Dag A (2016) Phosphorous nutritional level, carbohydrate reserves and flower quality in olive. PLoS ONE: 11(12)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Angel M, Linstead P, Costa S, Brownlee C, Jones JDG, et al (2003) Nature 2005 Carol RJ 1.pdf. 422: 442–446

    Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Giehl RF, Meda AR, von Wirén N (2009) Moving up, down, and everywhere: signaling of micronutrients in plants. Curr Opin Plant Biol 12:320–327

    Article  CAS  PubMed  Google Scholar 

  • Gierth M (2005) The Potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ Uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants - Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 Is a Plant-Specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Grusak MA, Pezeshgi S (1996) Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol 110:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/ nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:1–13

    Article  CAS  Google Scholar 

  • Gutierrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR et al (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci 105:4939–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez RA (2012) Systems biology for enhanced plant nitrogen nutrition. Science (80-) 336:1673–1675

    Article  CAS  Google Scholar 

  • Ham B-K, Lucas WJ (2017) Phloem-mobile RNAs as systemic signaling agents. Annu Rev Plant Biol 68:173–195

    Article  CAS  PubMed  Google Scholar 

  • Ham BK, Chen J, Yan Y, Lucas WJ (2018) Insights into plant phosphate sensing and signaling. Curr Opin Biotechnol 49:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hamburger D, Rezzonico E, Petétot JM-C, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Wu W, Wu WH, Wang Y (2016) Potassium Transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant 9:437–446

    Article  CAS  PubMed  Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Garcia-Garma J, Rubio-Asensio JS, Rubio F, Olmos E (2012) Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J Plant Physiol 169:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Hirsch RE (1998) A Role for the AKT1 potassium channel in plant nutrition. Science (80-) 280:918–921

    Article  CAS  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 Functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol 54:1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Huang T-K, Han C-L, Lin S-I, Chen Y-RY-SY-J, Tsai Y-C, Chen Y-RY-SY-J, Chen J-W, Lin W-Y, Chen P-M, Liu T-Y et al (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25:4044–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z (ed) Mineral nutrition of crops fundamental mechanisms and implications. Food Product Press, New York, pp 205–226

    Google Scholar 

  • Hugentobler U, Renwick JA (1995) Effects of plant nutrition on the balance of insect relevant cardenolides and glucosinolates in Erysimum cheiranthoides. Oecologia 102:95–101

    Article  CAS  PubMed  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management (INM), enhance agricultural productivity? J Pure and Appl Microbiol 9:1211–1221

    CAS  Google Scholar 

  • Jin J, Watt M, Mathesius U (2012) The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiol 159:489–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J-Y, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium Deprivation in Arabidopsis. Plant Cell Online 21:607–621

    Article  CAS  Google Scholar 

  • Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthomé R, Péret B, Javot H, Delannoy E, Marin E, Nakanishi TM et al (2016) A novel role for the root cap in phosphate uptake and homeostasis. Elife 5:1–16

    Article  Google Scholar 

  • Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell Online 16:2693–2704

    Article  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumí N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ros production during Arabidopsis root response to potassium deficiency. Mol Plant 3:420–427

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Ruzicka D, Shin R, Schachtman DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5:1042–1057

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4:1617–1619

    Article  PubMed  CAS  Google Scholar 

  • Keil HL, Shear CB (1972) Influence of nitrogen and potassium on fire blight severity in Bartlett pear trees in sand culture. Phytopathology 62:768

    Google Scholar 

  • Keller M, Rogiers SY, Schultz HR (2003) Nitrogen and ultraviolet radiation modify grapevines’ susceptibility to powdery mildew. Vitis 42:87–94

    CAS  Google Scholar 

  • Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA (2015) Role of ethylene in responses of plants to nitrogen availability. Front Plant Sci 6:927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh EJ, Zho L, Williams DS, Park J, Ding N, Duan YP, Kang BH (2012) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 249:686–697

    Article  Google Scholar 

  • Kim JS, Sagaram US, Burns JK, Li JL, Wan N (2009) Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathol. 99:50–57

    Article  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010a) Nitrate signaling: Adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K et al (2010b) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM (2010c) Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11:R123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO3 uptake system by NRT1.1-Mediated NO3 demand signaling in Arabidopsis. Plant Physiol 142:1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam H-M, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into Amino Acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Leigh RA (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3/-uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519

    Article  CAS  PubMed  Google Scholar 

  • Legaz F, Serna MD, Primo-Millo E (1995) Mobilization of the reserve N in citrus. Plant Soil 173:205–210

    Article  CAS  Google Scholar 

  • Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B et al (2014) A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Lin W-Y, Huang T-K, Chiou T-J (2013) NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25:4061–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liszkay A, Van Der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2, H2O2, and ˙OH) by Maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci 102:13693–13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao F-G, Lan W, Luan S (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci 112:E6571–E6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K-H, Huang C-Y, Tsay Y-F (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell Online 11:865–874

    Article  CAS  Google Scholar 

  • Liu K-H, Tsay Y-F (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KH, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S et al (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T-Y, Huang T-K, Tseng C-Y, Lai Y-S, Lin S-I, Lin W-Y, Chen J-W, Chiou T-J (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24:2168–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TY, Huang TK, Yang SY, Hong YT, Huang SM, Wang FN, Chiang SF, Tsai SY, Lu WC, Chiou TJ (2016) Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun 7:1–11

    CAS  Google Scholar 

  • Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E, Pérez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145–4154

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci 91:9272–9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM, Sanders D (1995) Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta 197:456–464

    Article  CAS  PubMed  Google Scholar 

  • Mahouachi J, Socorro AR, Talon M (2006) Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant Soil 281:137–146

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1–9

    Article  CAS  Google Scholar 

  • Marín IC, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D (2011) Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233:539–552

    Article  CAS  Google Scholar 

  • Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci U S A 96:7581–7586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell Online 18:3235–3251

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: Implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 275–294

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status? Ann Bot 101:485–489

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science (80-) 318:1417

    Article  CAS  Google Scholar 

  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, Jiménez-Domínguez G, Chávez-Calvillo G, Rellán-Álvarez R, Herrera-Estrella L (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci 114:E3563–E3572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Müller J, Toev T, Heisters M, Teller J, Moore KL, Hause G, Dinesh DC, Bürstenbinder K, Abel S (2015) Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Dev Cell 33:216–230

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1. 1 in the regulation of another nitrate transporter, NRT2. 1. Plant Cell 16:2433–2447

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath M, Tuteja N (2016) NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. Protoplasma 253:767–786

    Article  CAS  PubMed  Google Scholar 

  • Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam YJ, Tran LSP, Kojima M, Sakakibara H, Nishiyama R, Shin R (2012) Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One. https://doi.org/10.1371/journal.pone.0047797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Martínez V, Benito B, Rubio F (2016) Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Front Plant Sci 7:1–14

    Google Scholar 

  • Nieves-Cordones M, Miller AJ, Alemán F, Martínez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Ródenas R, Lara A, Martínez V, Rubio F (2018) The combination of K+ deficiency with other environmental stresses: what is the outcome? Physiol Plant. https://doi.org/10.1111/ppl.12827

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  CAS  PubMed  Google Scholar 

  • Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci 7:1–7

    Article  Google Scholar 

  • O’Brien JAA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RAA (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856

    Article  PubMed  CAS  Google Scholar 

  • Okamoto G, Jia H, Kitamura A, Hirano K (2001) Effect of different fertilizer application levels on texture of ‘Hakuho’ peach (Prunus persica Batsch). J Jpn Soc Hortic Sci 70:533–538

    Article  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, Scheible WR (2015) The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. J Exp Bot 66:1907–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BS, Seo JS, Chua N-H (2014) Nitrogenlimitation adaptation recruits PHOSPHATE2 to target the Phosphate Transporter PT2 for Degradation during the regulation of Arabidopsis Phosphate Homeostasis. Plant Cell 26:454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L (2014) Root architecture responses: in search of phosphate. Plant Physiol 166:1713–1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  CAS  PubMed  Google Scholar 

  • Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodriguez J et al (2014) SPX1 is a phosphate-dependent inhibitor of Pphosphate starvation response1 in Arabidopsis. Proc Natl Acad Sci 111:14947–14952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J (2017) Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Curr Opin Plant Biol 39:40–49

    Article  CAS  PubMed  Google Scholar 

  • Paulson GS, Hull LA, Biddinger D (2005) Effect of a plant growth regulator prohexadione-calcium on insect pests of apple and pear. J Econ Entomol 98:423–431

    Article  CAS  PubMed  Google Scholar 

  • Prabhu AS, Fageria NK, Huber DM, Rodrigues FA (2007) Potassium nutrition and plant diseases. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society (APS Press) Saint Paul, USA

    Google Scholar 

  • Rademacher V, Spinelli F, Costa G (2006) Prohexadione-Ca: modes for action of a multifunctional plant bioregulator for fruit trees. Acta Hort 727:97–106

    Article  CAS  Google Scholar 

  • Raese JT, Staiff DC (1989) Effect of fertilizers, rootstocks, and season on fruit quality, fruit disorders, and mineral composition of D’Anjou pears. Acta Hort 256:183–188

    Article  Google Scholar 

  • Rahayu YS, Walch-Liu P, Neumann G, Römheld V, Von Wirén N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3–induced stimulation of leaf growth. J Exp Bot 56:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh MG, Campbell WH (1991) Higher plant responses to environmental nitrate. Physiol Plant 82:640–650

    Article  CAS  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha -subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci 103:19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuveni M, Oppenheim D, Reuveni R (1998) Integrated control of powdery mildew on apple trees by foliar sprays of mono-potassium phosphate fertilizer and sterol inhibiting fungicides. Crop Prot 17:563–568

    Article  CAS  Google Scholar 

  • Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P (2013) Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol 197:1130–1141

    Article  CAS  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible W-R (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M, Sgherri C, Izzo R, Navari-Izzo F (2008) Brassica napus subjected to copper excess: Phospholipases C and D and glutathione system in signalling. Environ Exp Bot 62:238–246

    Article  CAS  Google Scholar 

  • Rufat J, DeJong TM (2001) Estimating seasonal nitrogen dynamics in peach trees in response to nitrogen availability. Tree Physiol 21:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply versus demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP (2015) The role of ethylene in plant Responses to K+ Deficiency. Front Plant Sci 6:1–4

    Article  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  CAS  PubMed  Google Scholar 

  • Schikora A (2001) Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiol 125:1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Séguéla M, Briat JF, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J 55:289–300

    Article  PubMed  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    Article  CAS  PubMed  Google Scholar 

  • Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Sirijovski N, Lundqvist J, Rosenbäck M, Elmlund H, Al-Karadaghi S, Willows RD, Hansson M (2008) Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit. J Biol Chem 283:11652–11660

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveals functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zheng N (2015) Molecular mechanism underlying the plant NRT1.1 dual-affinity nitrate transporter. Front Physiol 6:1–6

    Article  Google Scholar 

  • Sun L, Song L, Zhang Y, Zheng Z, Liu D (2016) Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiol 170:499–514

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Scheible W, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi M, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism. Plant Physiol 136:2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann AW, Vashisth T, Spann TM (2010) Mineral nutrition contributes to plant disease and pest resistance. University of Florida, IFAS Extension. HS1181

    Google Scholar 

  • Simon S, Lauri PE, Brun L, Defrance H, Sauphanor B (2015) Does manipulation of fruit-tree architecture affect the development of pests and pathogens? a case study in an organic apple orchard. J Hort Sci Biotech 81:765–773

    Article  Google Scholar 

  • Smith MW (2009) Partitioning phosphorus and potassium in pecan trees during high and low-crop seasons. J. Amer. Soc. Hort. Sci. 134:399–404

    Article  Google Scholar 

  • Spinelli F, Speakman JB, Rademacher W, Halbwirth H, Stich K, Costa G (2005) Luteoforol, a flavan 4-ol, is induced in pome fruits by prohexadione-calcium and shows phytoalexin-like properties against Erwinia amylovora and other plant pathogens. Eur J Plant Pathol 112:133–142

    Article  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Engler JA, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci 94:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian QY, Sun P, Zhang WH (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol 184:918–931

    Article  CAS  PubMed  Google Scholar 

  • Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci 106:14174–14179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Varala K, Marshall-Colón A, Cirrone J, Brooks MD, Pasquino AV, Léran S, Mittal S, Rock TM, Edwards MB, Kim GJ et al (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci 115:6494–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G, Chory J (2009) A toggle switch in plant nitrate uptake. Cell 138:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Álvarez JM, Moyano TC, Gutiérrez RA (2015) Transcriptional networks in the nitrate response of Arabidopsis thaliana. Curr Opin Plant Biol 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci 107:4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA (2013) Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC Genomics. https://doi.org/10.1186/1471-2164-14-701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J 54:820–828

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman S (2015) Shou H (2015) OsSPX-MFS3, a vacuolar phosphate efflux transporter, is involved in maintaining Pi homeostasis in rice. Plant Physiol 169:01005

    Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell Online 12:1491–1510

    Article  CAS  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in arabidopsis roots and shoots reveals over 1,000 Rapidly responding genes and new linkages to glucose, trehalose-6-Phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Xing X, Crawford N (2007) Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsisroots. Plant Physiol 145:1735–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu WH (2017) Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol 39:123–128

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Blatt MR, Chen Z-H (2018) Ion transport at the plant plasma membrane. Encycl Life Sci. https://doi.org/10.1002/9780470015902.a0001307.pub3

  • Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y et al (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci 111:14953–14958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • War AR, Taggar GK, Hussain B, Taggar MS, Nair RM, Sharma HC (2018) Plant defence against herbivory and insect adaptations. AoB Plants 10: ply037

    Google Scholar 

  • Wargo JM, Merwin IA, Watkins CB (2004) Nitrogen fertilization, midsummer trunk girdling, and AVG treatments affect maturity and quality of ‘Jonagold’ apples. HortScience 39:493–500

    Article  CAS  Google Scholar 

  • Wei Yang TJ, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59:3453–3464

    Article  PubMed Central  CAS  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899

    Article  CAS  PubMed  Google Scholar 

  • Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jacob Jessen H, Poirier Y, Hothorn M et al (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986–990

    Article  CAS  PubMed  Google Scholar 

  • Wolfert S, Ge L, Verdouw C, Bogaardt MJ (2017) Big data in smart farming—a review. Agric Syst 153:69–80

    Article  Google Scholar 

  • Wu M-F, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Wang R, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford NM et al (2016) The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell 28:485–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One. https://doi.org/10.1371/journal.pone.0028009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim J-S, Sun L, Zheng K, Tang K, Auer M et al (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335

    Article  CAS  PubMed  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    Article  CAS  PubMed  Google Scholar 

  • Yeh CM, Ohme-Takagi M, Tsai WC (2017) Current understanding on the roles of ethylene in plant responses to phosphate deficiency. Int J Plant Biol Res 5:1058

    Google Scholar 

  • Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279

    Article  CAS  PubMed  Google Scholar 

  • Yu LH, Wu J, Tang H, Yuan Y, Wang SM, Wang YP, Zhu QS, Li SG, Bin Xiang C (2016) Overexpression of arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Vieira Gomes E, Tsui CKM, Nayak C (2016) Friends or foes? emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40:182–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture (80-). Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zheng Y, Ham BK, Chen J, Yoshida A, Kochian LV, Fei Z, Lucas WJ (2016) Vascular-mediated signalling involved in early phosphate stress response in plants. Nat Plants 2:1–9

    Google Scholar 

  • Zhao L, Liu F, Crawford N, Wang Y (2018a) Molecular regulation of nitrate responses in plants. Int J Mol Sci 19:2039

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao L, Zhang W, Yang Y, Li Z, Li N, Qi S, Crawford NM, Wang Y (2018b) The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Zhao S, Zhang M-L, Ma T-L, Wang Y (2016) Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell 28:3005–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass ADM (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2; 1At) in roots of Arabidopsis thaliana. Plant J 17:563–568

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. W. Park or M. Kunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, J.W., Melgar, J.C., Kunta, M. (2019). Plant Nutritional Deficiency and Its Impact on Crop Production. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_12

Download citation

Publish with us

Policies and ethics