Skip to main content

Electrocatalysts for Photochemical Water-Splitting

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

The photochemical water splitting to produce O2 and H2 is considered as the most promising, sustainable, renewable and cost-effective energy technology for the future. In photochemical water splitting process, the efficiency of H2 and O2 production rates depends on the properties of the selected semiconductor material. However, most of the semiconductors face various limitations which confines their water splitting efficiency. Different strategies could be implemented to improve the water splitting efficiency of semiconductors. Among them, loading of catalyst onto the water splitting material is known to be one of the effective strategy to enhance the H2 and O2 production rates. Given this, several catalytic materials have been explored and successfully utilized in efficient O2 and H2 production systems. In this chapter, we summarize some of the effective O2 and H2 production catalysts derived from noble metal, noble metal oxides, earth-abundant metals and oxides, metal phosphides and metal chalcogenides. The surface deposited catalysts were known to reduce the surface trap states, which decreases the charge recombination and acts as protective layer to minimize photo-corrosion of the light absorbing semiconductors. Conclusively, to explore the efficient catalysts for photochemical water splitting require more research contribution towards the understanding of the core reaction mechanism of catalytic process with the use of sustainable and stable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe R (2011) Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. BCSJ 84:1000–1030. https://doi.org/10.1246/bcsj.20110132

    Article  CAS  Google Scholar 

  2. Agegnehu AK, Pan C-J, Rick J, Lee J-F, Su W-N, Hwang B-J (2012) Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets. J Mater Chem 22:13849–13854. https://doi.org/10.1039/C2JM30474K

    Article  CAS  Google Scholar 

  3. Badwal SPS, Giddey S, Munnings C (2013) Hydrogen production via solid electrolytic routes. Wiley Interdisc Rev Energy Environ 2:473–487. https://doi.org/10.1002/wene.50

    Article  CAS  Google Scholar 

  4. Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33:4013–4029. https://doi.org/10.1016/j.ijhydene.2008.05.047

    Article  CAS  Google Scholar 

  5. Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75. https://doi.org/10.1016/0047-2670(79)80037-4

    Article  CAS  Google Scholar 

  6. Birol F (2006) World energy prospects and challenges. Aust Econ Rev 39:190–195. https://doi.org/10.1111/j.1467-8462.2006.00411.x

    Article  Google Scholar 

  7. Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495. https://doi.org/10.1038/316495a0

    Article  CAS  Google Scholar 

  8. Cao S, Chen Y, Wang C-J, He P, Fu W-F (2014) Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem Commun 50:10427–10429. https://doi.org/10.1039/C4CC05026F

    Article  CAS  Google Scholar 

  9. Cao S, Chen Y, Wang C-J, Lv X-J, Fu W-F (2015) Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem Commun 51:8708–8711. https://doi.org/10.1039/C5CC01799H

    Article  CAS  Google Scholar 

  10. Cao S, Wang C-J, Fu W-F, Chen Y (2017) Metal phosphides as Co-catalysts for photocatalytic and photoelectrocatalytic water splitting. Chemsuschem 10:4306–4323. https://doi.org/10.1002/cssc.201701450

    Article  CAS  Google Scholar 

  11. Cao S, Wang C-J, Lv X-J, Chen Y, Fu W-F (2015) A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Appl Catal B 162:381–391. https://doi.org/10.1016/j.apcatb.2014.07.014

    Article  CAS  Google Scholar 

  12. Carroll GM, Gamelin DR (2016) Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J Mater Chem A 4:2986–2994. https://doi.org/10.1039/C5TA06978E

    Article  CAS  Google Scholar 

  13. Chemelewski WD, Lee H-C, Lin J-F, Bard AJ, Mullins CB (2014) Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J Am Chem Soc 136:2843–2850. https://doi.org/10.1021/ja411835a

    Article  CAS  Google Scholar 

  14. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2:17050. https://doi.org/10.1038/natrevmats.2017.50

    Article  CAS  Google Scholar 

  15. Chen X, Zhang Z, Chi L, Nair AK, Shangguan W, Jiang Z (2016) Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett 8:1–12. https://doi.org/10.1007/s40820-015-0063-3

    Article  CAS  Google Scholar 

  16. Cheng H, Lv X-J, Cao S, Zhao Z-Y, Chen Y, Fu W-F (2016) Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. Sci Rep 6:19846. https://doi.org/10.1038/srep19846

    Article  CAS  Google Scholar 

  17. Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371–2378. https://doi.org/10.1039/B718535A

    Article  CAS  Google Scholar 

  18. Clarke RE, Giddey S, Badwal SPS (2010) Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source. Int J Hydrogen Energy 35:928–935. https://doi.org/10.1016/j.ijhydene.2009.11.100

    Article  CAS  Google Scholar 

  19. Dinh C-T, Pham M-H, Kleitz F, Do T-O (2013) Design of water-soluble CdS–titanate–nickel nanocomposites for photocatalytic hydrogen production under sunlight. J Mater Chem A 1:13308–13313. https://doi.org/10.1039/C3TA12914D

    Article  CAS  Google Scholar 

  20. Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165. https://doi.org/10.1016/j.ijhydene.2017.08.103

    Article  CAS  Google Scholar 

  21. Fang Y-H, Liu Z-P (2010) Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2(110). J Am Chem Soc 132:18214–18222. https://doi.org/10.1021/ja1069272

    Article  CAS  Google Scholar 

  22. Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR (2014) Back electron-hole recombination in hematite photoanodes for water splitting. J Am Chem Soc 136:2564–2574. https://doi.org/10.1021/ja412058x

    Article  CAS  Google Scholar 

  23. Frame FA, Townsend TK, Chamousis RL, Sabio EM, Dittrich Th, Browning ND, Osterloh FE (2011) Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J Am Chem Soc 133:7264–7267. https://doi.org/10.1021/ja200144w

    Article  CAS  Google Scholar 

  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  25. Gupta B, Melvin AA, Matthews T, Dash S, Tyagi AK (2014) Facile gamma radiolytic synthesis of synergistic Co3O4-rGO nanocomposite: direct use in photocatalytic water splitting. Mater Res Express 1:045507. https://doi.org/10.1088/2053-1591/1/4/045507

    Article  CAS  Google Scholar 

  26. Gurudayal Bassi PS, Sritharan T, Wong LH (2018) Recent progress in iron oxide based photoanodes for solar water splitting. J Phys D Appl Phys 51:473002. https://doi.org/10.1088/1361-6463/aae138

    Article  CAS  Google Scholar 

  27. Han B, Hu YH (2016) MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng 4:285–304. https://doi.org/10.1002/ese3.128

    Article  CAS  Google Scholar 

  28. Hara M, Kondo T, Komoda M, Ikeda S, Kondo JN, Domen K, Hara M, Shinohara K, Tanaka A (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358. https://doi.org/10.1039/A707440I

    Article  Google Scholar 

  29. Hara M, Nunoshige J, Takata T, Kondo JN, Domen K (2003) Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem Commun 24:3000–3001. https://doi.org/10.1039/B309935K

    Article  Google Scholar 

  30. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. https://doi.org/10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  31. Hong J, Wang Y, Wang Y, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. Chemsuschem 6:2263–2268. https://doi.org/10.1002/cssc.201300647

    Article  CAS  Google Scholar 

  32. Hu S, Lewis NS, Ager JW, Yang J, McKone JR, Strandwitz NC (2015) Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J Phys Chem C 119:24201–24228. https://doi.org/10.1021/acs.jpcc.5b05976

    Article  CAS  Google Scholar 

  33. Hu Z, Yu JC (2013) Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. J Mater Chem A 1:12221–12228. https://doi.org/10.1039/C3TA12407J

    Article  CAS  Google Scholar 

  34. Huang Y, Liu Z, Gao G, Xiao G, Du A, Bottle S, Sarina S, Zhu H (2017) Stable copper nanoparticle photocatalysts for selective epoxidation of alkenes with visible light. ACS Catal 7:4975–4985. https://doi.org/10.1021/acscatal.7b01180

    Article  CAS  Google Scholar 

  35. Iwase A, Yoshino S, Takayama T, Ng YH, Amal R, Kudo A (2016) Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-Loaded BiVO4, and a reduced graphene oxide electron mediator. J Am Chem Soc 138:10260–10264. https://doi.org/10.1021/jacs.6b05304

    Article  CAS  Google Scholar 

  36. Jacobsson TJ, Fjällström V, Edoff M, Edvinsson T (2014) Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ Sci 7:2056–2070. https://doi.org/10.1039/C4EE00754A

    Article  CAS  Google Scholar 

  37. Jakob M, Levanon H, Prashant VK (2003) Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters 3:353–358. https://doi.org/10.1021/nl0340071

    Article  CAS  Google Scholar 

  38. Janáky C, Chanmanee W, Rajeshwar K (2013) On the substantially improved photoelectrochemical properties of nanoporous WO3 through surface decoration with RuO2. Electrocatalysis 4:382–389. https://doi.org/10.1007/s12678-013-0177-7

    Article  CAS  Google Scholar 

  39. Jian J, Jiang G, van de Krol R, Wei B, Wang H (2018) Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 51:457–480. https://doi.org/10.1016/j.nanoen.2018.06.074

    Article  CAS  Google Scholar 

  40. Kalanoor BS, Seo H, Kalanur SS (2018) Recent developments in photoelectrochemical water-splitting using WO3/BiVO4 heterojunction photoanode: a review. Mater Sci Energy Technol 1:49–62. https://doi.org/10.1016/j.mset.2018.03.004

    Article  Google Scholar 

  41. Kalanur SS, Duy LT, Seo H (2018) Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes. Top Catal 61:1–34. https://doi.org/10.1007/s11244-018-0950-1

    Article  CAS  Google Scholar 

  42. Kalanur SS, Hwang YJ, Chae SY, Joo OS (2013) Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J Mater Chem A 1:3479–3488. https://doi.org/10.1039/C3TA01175E

    Article  CAS  Google Scholar 

  43. Kalanur SS, Hwang YJ, Joo O-S (2013) Construction of efficient CdS–TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes. J Colloid Interface Sci 402:94–99. https://doi.org/10.1016/j.jcis.2013.03.049

    Article  CAS  Google Scholar 

  44. Kalanur SS, Hwang J-Y, Seo H (2017) Facile fabrication of bitter-gourd-shaped copper (II) tungstate thin films for improved photocatalytic water splitting. J Catal 350:197–202. https://doi.org/10.1016/j.jcat.2017.04.008

    Article  CAS  Google Scholar 

  45. Kalanur SS, Lee SH, Hwang YJ, Joo O-S (2013) Enhanced photoanode properties of CdS nanoparticle sensitized TiO2 nanotube arrays by solvothermal synthesis. J Photochem Photobiol, A 259:1–9. https://doi.org/10.1016/j.jphotochem.2013.02.018

    Article  CAS  Google Scholar 

  46. Kalanur SS, Seo H (2019) Intercalation of barium into monoclinic tungsten oxide nanoplates for enhanced photoelectrochemical water splitting. Chem Eng J 355:784–796. https://doi.org/10.1016/j.cej.2018.08.210

    Article  CAS  Google Scholar 

  47. Kalanur SS, Seo H (2019) Facile growth of compositionally tuned copper vanadate nanostructured thin films for efficient photoelectrochemical water splitting. Appl Catal B 249:235–245. https://doi.org/10.1016/j.apcatb.2019.02.069

    Article  CAS  Google Scholar 

  48. Kanan MW, Surendranath Y, Nocera DG (2008) Cobalt–phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114. https://doi.org/10.1039/B802885K

    Article  Google Scholar 

  49. Kegel J, Povey IM, Pemble ME (2018) Zinc oxide for solar water splitting: a brief review of the material’s challenges and associated opportunities. Nano Energy 54:409–428. https://doi.org/10.1016/j.nanoen.2018.10.043

    Article  CAS  Google Scholar 

  50. Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, Dai H (2013) High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342:836–840. https://doi.org/10.1126/science.1241327

    Article  CAS  Google Scholar 

  51. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427. https://doi.org/10.1126/science.280.5362.425

    Article  CAS  Google Scholar 

  52. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. J Am Chem Soc 134:16693–16700. https://doi.org/10.1021/ja306427f

    Article  CAS  Google Scholar 

  53. Korzhak AV, Ermokhina NI, Stroyuk AL, Bukhtiyarov VK, Raevskaya AE, Litvin VI, Kuchmiy SY, Ilyin VG, Manorik PA (2008) Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. J Photochem Photobiol, A 198:126–134. https://doi.org/10.1016/j.jphotochem.2008.02.026

    Article  CAS  Google Scholar 

  54. Kudo A, Miseki Y (2008) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. https://doi.org/10.1039/B800489G

    Article  Google Scholar 

  55. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  Google Scholar 

  56. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of Cds-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884. https://doi.org/10.1021/ja2025454

    Article  CAS  Google Scholar 

  57. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5:1360–1384. https://doi.org/10.1039/C4CY00974F

    Article  CAS  Google Scholar 

  58. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. https://doi.org/10.1039/C4TA04461D

    Article  CAS  Google Scholar 

  59. Li Y, Yu Z, Meng J, Li Y (2013) Enhancing the activity of a SiC–TiO2 composite catalyst for photo-stimulated catalytic water splitting. Int J Hydrogen Energy 38:3898–3904. https://doi.org/10.1016/j.ijhydene.2013.01.077

    Article  CAS  Google Scholar 

  60. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000) Efficient solar water splitting, exemplified by RuO2-Catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104:8920–8924. https://doi.org/10.1021/jp002083b

    Article  CAS  Google Scholar 

  61. Lin Z, Li J, Li L, Yu L, Li W, Yang G (2017) Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. J Mater Chem A 5:773–781. https://doi.org/10.1039/C6TA09169E

    Article  CAS  Google Scholar 

  62. Lin H-Y, Yang H-C, Wang W-L (2011) Synthesis of mesoporous Nb2O5 photocatalysts with Pt, Au, Cu and NiO cocatalyst for water splitting. Catal Today 174:106–113. https://doi.org/10.1016/j.cattod.2011.01.052

    Article  CAS  Google Scholar 

  63. Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6:3589–3594. https://doi.org/10.1039/C3EE42623H

    Article  CAS  Google Scholar 

  64. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. https://doi.org/10.1038/nmat3151

    Article  CAS  Google Scholar 

  65. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861. https://doi.org/10.1021/jp070911w

    Article  CAS  Google Scholar 

  66. Mangrulkar PA, Joshi MM, Tijare SN, Polshettiwar V, Labhsetwar NK, Rayalu SS (2012) Nano cobalt oxides for photocatalytic hydrogen production. Int J Hydrogen Energy 37:10462–10466. https://doi.org/10.1016/j.ijhydene.2012.01.112

    Article  CAS  Google Scholar 

  67. Marimuthu A, Zhang J, Linic S (2013) Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339:1590–1593. https://doi.org/10.1126/science.1231631

    Article  CAS  Google Scholar 

  68. May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286. https://doi.org/10.1038/ncomms9286

    Article  CAS  Google Scholar 

  69. Mei Z, Li Y, Yang X, Ren W, Tong S, Zhang N, Zhao W, Lin Y, Pan F (2018) Tuning nanosheet Fe2O3 photoanodes with C3N4 and p-type CoOx decoration for efficient and stable water splitting. Catal Sci Technol 8:3144–3150. https://doi.org/10.1039/C8CY00729B

    Article  CAS  Google Scholar 

  70. Melchionna M, Beltram A, Stopin A, Montini T, Lodge RW, Khlobystov AN, Bonifazi D, Prato M, Fornasiero P (2018) Magnetic shepherding of nanocatalysts through hierarchically-assembled Fe-filled CNTs hybrids. Appl Catal B 227:356–365. https://doi.org/10.1016/j.apcatb.2018.01.049

    Article  CAS  Google Scholar 

  71. Miyoshi A, Nishioka S, Maeda K (2018) Water splitting on rutile TiO2-based photocatalysts. Chem Eur J 24:18204–18219. https://doi.org/10.1002/chem.201800799

    Article  CAS  Google Scholar 

  72. Moore GF, Brudvig GW (2011) Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu Rev Condens Matter Phys 2:303–327. https://doi.org/10.1146/annurev-conmatphys-062910-140503

    Article  CAS  Google Scholar 

  73. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3:489–492. https://doi.org/10.1038/nchem.1048

    Article  CAS  Google Scholar 

  74. Nishiyama H, Kobayashi H, Inoue Y (2011) Effects of distortion of metal-oxygen octahedra on photocatalytic water-splitting performance of RuO2-loaded niobium and tantalum phosphate bronzes. Chemsuschem 4:208–215. https://doi.org/10.1002/cssc.201000294

    Article  CAS  Google Scholar 

  75. Onsuratoom S, Puangpetch T, Chavadej S (2011) Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts. Chem Eng J 173:667–675. https://doi.org/10.1016/j.cej.2011.08.016

    Article  CAS  Google Scholar 

  76. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320. https://doi.org/10.1039/C2CS35266D

    Article  CAS  Google Scholar 

  77. Pan L, Kim JH, Mayer MT, Son M-K, Ummadisingu A, Lee JS, Hagfeldt A, Luo J, Grätzel M (2018) Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal 1:412. https://doi.org/10.1038/s41929-018-0077-6

    Article  CAS  Google Scholar 

  78. Pan Z, Zheng Y, Guo F, Niu P, Wang X (2017) Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. Chemsuschem 10:87–90. https://doi.org/10.1002/cssc.201600850

    Article  CAS  Google Scholar 

  79. Pastoriza-Santos I, Sánchez-Iglesias A, Rodríguez-González B, Liz-Marzán LM (2009) Aerobic synthesis of Cu nanoplates with intense plasmon resonances. Small 5:440–443. https://doi.org/10.1002/smll.200801088

    Article  CAS  Google Scholar 

  80. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270. https://doi.org/10.1021/ja403440e

    Article  CAS  Google Scholar 

  81. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9:62–73. https://doi.org/10.1039/C5EE02657A

    Article  CAS  Google Scholar 

  82. Potje-Kamloth K (2008) Semiconductor junction gas sensors. Chem Rev 108:367–399. https://doi.org/10.1021/cr0681086

    Article  CAS  Google Scholar 

  83. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812. https://doi.org/10.1039/C3CS60425J

    Article  CAS  Google Scholar 

  84. Reddy DA, Choi J, Lee S, Kim Y, Hong S, Kumar DP, Kim TK (2016) Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS2 nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water. Catal Sci Technol 6:6197–6206. https://doi.org/10.1039/C6CY00768F

    Article  CAS  Google Scholar 

  85. Reddy VR, Hwang DW, Lee JS (2003) Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J Chem Eng 20:1026–1029. https://doi.org/10.1007/BF02706932

    Article  CAS  Google Scholar 

  86. Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. Int J Hydrogen Energy 43:1116–1122. https://doi.org/10.1016/j.ijhydene.2017.10.154

    Article  CAS  Google Scholar 

  87. Sasaki Y, Iwase A, Kato H, Kudo A (2008) The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259:133–137. https://doi.org/10.1016/j.jcat.2008.07.017

    Article  CAS  Google Scholar 

  88. Sayama K, Yase K, Arakawa H, Asakura K, Tanaka A, Domen K, Onishi T (1998) Photocatalytic activity and reaction mechanism of Pt-intercalated K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution. J Photochem Photobiol, A 114:125–135. https://doi.org/10.1016/S1010-6030(98)00202-0

    Article  CAS  Google Scholar 

  89. Sayed FN, Jayakumar OD, Sasikala R, Kadam RM, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal JP, Tyagi AK (2012) Photochemical hydrogen generation using nitrogen-doped TiO2–Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation. J Phys Chem C 116:12462–12467. https://doi.org/10.1021/jp3029962

    Article  CAS  Google Scholar 

  90. Seger B, Laursen AB, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Chorkendorff I (2012) Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew Chem Int Ed 51:9128–9131. https://doi.org/10.1002/anie.201203585

    Article  CAS  Google Scholar 

  91. Seo SW, Park S, Jeong H-Y, Kim SH, Sim U, Lee CW, Nam KT, Hong KS (2012) Enhanced performance of NaTaO3 using molecular co-catalyst [Mo3S4]4+ for water splitting into H2 and O2. Chem Commun 48:10452–10454. https://doi.org/10.1039/C2CC36216C

    Article  CAS  Google Scholar 

  92. Shi J, Guo L (2012) ABO3-based photocatalysts for water splitting. Progr Nat Sci Mater Int 22:592–615. https://doi.org/10.1016/j.pnsc.2012.12.002

    Article  Google Scholar 

  93. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D, Wyrwich R, Döblinger M, Susha AS, Rogach AL, Jäckel F, Stolarczyk JK, Feldmann J (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018. https://doi.org/10.1038/nmat4049

    Article  CAS  Google Scholar 

  94. Sinigaglia T, Lewiski F, Santos Martins ME, Mairesse Siluk JC (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42:24597–24611. https://doi.org/10.1016/j.ijhydene.2017.08.063

    Article  CAS  Google Scholar 

  95. Sreethawong T, Suzuki Y, Yoshikawa S (2005) Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template. Int J Hydrogen Energy 30:1053–1062. https://doi.org/10.1016/j.ijhydene.2004.09.007

    Article  CAS  Google Scholar 

  96. Stern PC, Sovacool BK, Dietz T (2016) Towards a science of climate and energy choices. Nature Climate Change 6:547–555. https://doi.org/10.1038/nclimate3027

    Article  Google Scholar 

  97. Sun Z, Chen H, Huang Q, Du P (2015) Enhanced photocatalytic hydrogen production in water under visible light using noble metal-free ferrous phosphide as an active cocatalyst. Catal Sci Technol 5:4964–4967. https://doi.org/10.1039/C5CY01293G

    Article  CAS  Google Scholar 

  98. Sun Z, Lv B, Li J, Xiao M, Wang X, Du P (2016) Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J Mater Chem A 4:1598–1602. https://doi.org/10.1039/C5TA07561K

    Article  CAS  Google Scholar 

  99. Sun Z, Yue Q, Li J, Xu J, Zheng H, Du P (2015) Copper phosphide modified cadmium sulfide nanorods as a novel p–n heterojunction for highly efficient visible-light-driven hydrogen production in water. J Mater Chem A 3:10243–10247. https://doi.org/10.1039/C5TA02105G

    Article  CAS  Google Scholar 

  100. Sun Z, Zheng H, Li J, Du P (2015) Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ Sci 8:2668–2676. https://doi.org/10.1039/C5EE01310K

    Article  CAS  Google Scholar 

  101. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518. https://doi.org/10.1038/nphoton.2012.175

    Article  CAS  Google Scholar 

  102. Takata T, Domen K (2019) Particulate photocatalysts for water splitting: recent advances and future prospects. ACS Energy Lett 4:542–549. https://doi.org/10.1021/acsenergylett.8b02209

    Article  CAS  Google Scholar 

  103. Takata T, Pan C, Nakabayashi M, Shibata N, Domen K (2015) Fabrication of a core–shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: an effective surface modification method for overall water splitting. J Am Chem Soc 137:9627–9634. https://doi.org/10.1021/jacs.5b04107

    Article  CAS  Google Scholar 

  104. Tang ML, Grauer DC, Lassalle-Kaiser B, Yachandra VK, Amirav L, Long JR, Yano J, Alivisatos AP (2011) Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. Angew Chem Int Ed 50:10203–10207. https://doi.org/10.1002/anie.201104412

    Article  CAS  Google Scholar 

  105. Tian H, Zhang XL, Scott J, Ng C, Amal R (2014) TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. J Mater Chem A 2:6432–6438. https://doi.org/10.1039/C3TA15254E

    Article  CAS  Google Scholar 

  106. Tran PD, Xi L, Batabyal SK, Wong LH, Barber J, Loo JSC (2012) Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Phys Chem Chem Phys 14:11596–11599. https://doi.org/10.1039/C2CP41450C

    Article  CAS  Google Scholar 

  107. Trześniewski BJ, Smith WA (2016) Photocharged BiVO4 photoanodes for improved solar water splitting. J Mater Chem A 4:2919–2926. https://doi.org/10.1039/C5TA04716A

    Article  CAS  Google Scholar 

  108. Wan S, Ou M, Zhong Q, Zhang S, Song F (2017) Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chem Eng J 325:690–699. https://doi.org/10.1016/j.cej.2017.05.047

    Article  CAS  Google Scholar 

  109. Wang C, Cao S, Fu W-F (2013) A stable dual-functional system of visible-light-driven Ni(II) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production. Chem Commun 49:11251–11253. https://doi.org/10.1039/C3CC46623J

    Article  CAS  Google Scholar 

  110. Wang J, Li B, Chen J, Li N, Zheng J, Zhao J, Zhu Z (2012) Enhanced photocatalytic H2-production activity of CdxZn1−xS nanocrystals by surface loading MS (M = Ni Co, Cu) species. Appl Surf Sci 259:118–123. https://doi.org/10.1016/j.apsusc.2012.07.003

    Article  CAS  Google Scholar 

  111. Wang X, Liu G, Wang L, Chen Z-G, Lu GQ, Cheng H-M (2012) ZnO–CdS@Cd heterostructure for effective photocatalytic hydrogen generation. Adv Energy Mater 2:42–46. https://doi.org/10.1002/aenm.201100528

    Article  CAS  Google Scholar 

  112. Wang Z, Wang J, Li L, Zheng J, Jia S, Chen J, Liu B, Zhu Z (2017) Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. J Mater Chem A 5:20131–20135. https://doi.org/10.1039/C7TA06085H

    Article  CAS  Google Scholar 

  113. Wang Y, Zhu D, Xu X (2016) Zr-doped mesoporous Ta3N5 microspheres for efficient photocatalytic water oxidation. ACS Appl Mater Interfaces 8:35407–35418. https://doi.org/10.1021/acsami.6b14230

    Article  CAS  Google Scholar 

  114. Wu W, Yue X, Wu X-Y, Lu C-Z (2016) Efficient visible-light-induced hydrogen evolution from water splitting using a nanocrystalline nickel phosphide catalyst. RSC Adv 6:24361–24365. https://doi.org/10.1039/C5RA25286E

    Article  CAS  Google Scholar 

  115. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 Nanoparticles. J Am Chem Soc 134:6575–6578. https://doi.org/10.1021/ja302846n

    Article  CAS  Google Scholar 

  116. Xu X-T, Pan L, Zhang X, Wang L, Zou J-J (2019) Rational Design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv Sci 6:1801505. https://doi.org/10.1002/advs.201801505

    Article  CAS  Google Scholar 

  117. Xu Y, Wu R, Zhang J, Shi Y, Zhang B (2013) Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun 49:6656–6658. https://doi.org/10.1039/C3CC43107J

    Article  CAS  Google Scholar 

  118. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J Catal 266:165–168. https://doi.org/10.1016/j.jcat.2009.06.024

    Article  CAS  Google Scholar 

  119. Yang T, Bao Y, Xiao W, Zhou J, Ding J, Feng YP, Loh KP, Yang M, Wang SJ (2018) Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl Mater Interfaces 10:22042–22049. https://doi.org/10.1021/acsami.8b03977

    Article  CAS  Google Scholar 

  120. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909. https://doi.org/10.1021/ar300227e

    Article  CAS  Google Scholar 

  121. Yi S-S, Zhang X-B, Wulan B-R, Yan J-M, Jiang Q (2018) Non-noble metals applied to solar water splitting. Energy Environ Sci 11:3128–3156. https://doi.org/10.1039/C8EE02096E

    Article  CAS  Google Scholar 

  122. Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K (2009) Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 113:10151–10157. https://doi.org/10.1021/jp901418u

    Article  CAS  Google Scholar 

  123. Yu S-H, Chiu C-W, Wu Y-T, Liao C-H, Nguyen V-H, Wu JCS (2016) Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3/I shuttle redox mediator. Appl Catal A 518:158–166. https://doi.org/10.1016/j.apcata.2015.08.027

    Article  CAS  Google Scholar 

  124. Yuan Y-P, Cao S-W, Yin L-S, Xu L, Xue C (2013) NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:7218–7223. https://doi.org/10.1016/j.ijhydene.2013.03.169

    Article  CAS  Google Scholar 

  125. Zeng C, Hu T, Hou N, Liu S, Gao W, Cong R, Yang T (2015) Photocatalytic pure water splitting activities for ZnGa2O4 synthesized by various methods. Mater Res Bull 61:481–485. https://doi.org/10.1016/j.materresbull.2014.10.041

    Article  CAS  Google Scholar 

  126. Zhang L, Jiang T, Li S, Lu Y, Wang L, Zhang X, Wang D, Xie T (2013) Enhancement of photocatalytic H2 evolution on Zn0.8Cd0.2S loaded with CuS as cocatalyst and its photogenerated charge transfer properties. Dalton Trans 42:12998–13003. https://doi.org/10.1039/C3DT51256H

    Article  CAS  Google Scholar 

  127. Zhang L, Tian B, Chen F, Zhang J (2012) Nickel sulfide as co-catalyst on nanostructured TiO2 for photocatalytic hydrogen evolution. Int J Hydrogen Energy 37:17060–17067. https://doi.org/10.1016/j.ijhydene.2012.08.120

    Article  CAS  Google Scholar 

  128. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551. https://doi.org/10.1021/cr3000626

    Article  CAS  Google Scholar 

  129. Zhou X, Liu R, Sun K, Friedrich D, McDowell MT, Yang F, Omelchenko ST, Saadi FH, Nielander AC, Yalamanchili S, Papadantonakis KM, Brunschwig BS, Lewis NS (2015) Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ Sci 8:2644–2649. https://doi.org/10.1039/C5EE01687H

    Article  CAS  Google Scholar 

  130. Zhu Y, Marianov A, Xu H, Lang C, Jiang Y (2018) Bimetallic Ag–Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production. ACS Appl Mater Interfaces 10:9468–9477. https://doi.org/10.1021/acsami.8b00393

    Article  CAS  Google Scholar 

  131. Zong X, Han J, Ma G, Yan H, Wu G, Li C (2011) Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J Phys Chem C 115:12202–12208. https://doi.org/10.1021/jp2006777

    Article  CAS  Google Scholar 

  132. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177. https://doi.org/10.1021/ja8007825

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankara S. Kalanur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalanur, S.S., Seo, H. (2020). Electrocatalysts for Photochemical Water-Splitting. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_7

Download citation

Publish with us

Policies and ethics