Skip to main content

Electrocatalysts for Photoelectrochemical Water Splitting

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

The fast depletion of fossil fuels, the main energy sources, in addition to the emission of carbon dioxide (CO2) from burning of these fuels intensifying the research for the development of alternative clean, sustainable and secure energy source. Hydrogen (H2) is considered as one of the most promising alternatives that can play a significant role as a zero-carbon energy carrier with reduced fossil fuel dependence. Utilization of two of our most abundant resources, sunlight and water, for the production of hydrogen via mimicking the natural photosynthesis process by the photocatalytic water splitting by using a semiconductor photocatalyst is a fascinating way for the establishment of clean, sustainable and secure energy source. This chapter highlights the efforts that have been devoted for the development of photocatalysts that can efficiently harvest the maximum solar light for the photoelectrochemical water splitting into hydrogen and oxygen. The difficulties in achieving water splitting under visible light will be addressed. Furthermore, the strategies for overcoming these difficulties and approaches for improving the visible light response of the photocatalysts towards water splitting will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110:2219–2226. https://doi.org/10.1021/jp0552933

    Article  CAS  Google Scholar 

  2. Akpan U, Hameed B (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2):520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  CAS  Google Scholar 

  3. Arai N, Saito N, Nishiyama H, Inoue Y, Domen K, Sato K (2006) Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration. Chem Lett 35:796–797. https://doi.org/10.1246/cl.2006.796

    Article  CAS  Google Scholar 

  4. Asahi R, Morikawa T (2007) Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem Phys 339:57–63. https://doi.org/10.1016/j.chemphys.2007.07.041

    Article  CAS  Google Scholar 

  5. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    Article  CAS  Google Scholar 

  6. Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrogen Energy 23:427–438. https://doi.org/10.1016/S0360-3199(97)00103-1

    Article  CAS  Google Scholar 

  7. Bai HW, Kwan KSY, Liu ZY, Song X, Lee SS, Sun DD (2013) Facile synthesis of hierarchically meso/nanoporous s- and c-codoped TiO2 and its high photocatalytic efficiency in H2 generation. Appl Catal B 129:294–300. https://doi.org/10.1016/j.apcatb.2012.09.033

    Article  CAS  Google Scholar 

  8. Bai S, Li H, Guan Y, Jiang S (2010) The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Appl Surf Sci 257:6406–6409. https://doi.org/10.1016/j.apsusc.2011.02.007

    Article  CAS  Google Scholar 

  9. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002. https://doi.org/10.1021/ja00375a010

    Article  CAS  Google Scholar 

  10. Chen HM, Chen CK, Liu R, Zhang L, Zhang J, Wilkinson DP (2012) Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Rev 41:5654–5671. https://doi.org/10.1039/c2cs35019j

    Article  CAS  Google Scholar 

  11. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. https://doi.org/10.1021/cr1001645

    Article  CAS  Google Scholar 

  12. Chen M-l, Zhang F-j, Oh W-C (2009) Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater 24(2009):159–166. https://doi.org/10.1016/S1872-5805(08)60045-1

    Article  CAS  Google Scholar 

  13. Chiang K, Amal R, Tran T (2002) Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res 6:471–485. https://doi.org/10.1016/S1093-0191(01)00074-0

    Article  CAS  Google Scholar 

  14. Choi H, Stathatos E, Dionysiou DD (2006) Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/ Al2O3 composite membranes for environmental applications. Appl Catal B 63:60–67. https://doi.org/10.1016/j.apcatb.2005.09.012

    Article  CAS  Google Scholar 

  15. Darwent JR, Mills A (1982) Photo-oxidation of water sensitized by WO3 powder. J Chem Soc Faraday Trans 2:359–367. https://doi.org/10.1039/f29827800359

    Article  Google Scholar 

  16. Darwent JR, Porter G (1981) Photochemical hydrogen production using cadmium sulphide suspensions in aerated water. J Chem Soc Chem Commun 4:145–146. https://doi.org/10.1039/c39810000145

    Article  Google Scholar 

  17. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34:5337–5346. https://doi.org/10.1016/j.ijhydene.2009.05.011

    Article  CAS  Google Scholar 

  18. Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 12:543–544. https://doi.org/10.1039/C39800000543

    Article  Google Scholar 

  19. Dong F, Wang H, Wu Z, Qiu J (2010) Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification. J Colloid Interface Sci 343:200–208. https://doi.org/10.1016/j.jcis.2009.11.012

    Article  CAS  Google Scholar 

  20. Ellis AB, Kaiser SW, Bolts JM, Wrighton MS (1977) Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J Am Chem Soc 99:2839–2848. https://doi.org/10.1021/ja00451a001

    Article  CAS  Google Scholar 

  21. Erbs W, Desilvestro J, Borgarello E, Grätzel M (1984) Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J Phys Chem 88:4001–4006. https://doi.org/10.1021/j150662a028

    Article  CAS  Google Scholar 

  22. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  23. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:4968. https://doi.org/10.1021/cr00033a003

    Article  Google Scholar 

  24. Hashimoto K, Kawai T, Sakata T (1983) Hydrogen production with visible light by using dye-sensitized TiO2 powder. Nouv J Chim 7:249–253

    CAS  Google Scholar 

  25. He T, Zhou Z, Xu W, Cao Y, Shi Z, Pan W-P (2010) Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber. Compos Sci Technol 70:1469–1475. https://doi.org/10.1016/j.compscitech.2010.05.001

    Article  CAS  Google Scholar 

  26. Hitoki G, Ishikawa A, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ < 600 nm). Chem Lett 31:736–737. https://doi.org/10.1246/cl.2002.736

    Article  Google Scholar 

  27. Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12:26–32. https://doi.org/10.1021/nl2028188

    Article  CAS  Google Scholar 

  28. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072. https://doi.org/10.1021/jp0564400

    Article  CAS  Google Scholar 

  29. Ikarashi K, Sato J, Kobayashi H, Saito N, Nishiyama H, Inous Y (2002) Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J Phys Chem B 106:9048–9053. https://doi.org/10.1021/jp020539e

    Article  CAS  Google Scholar 

  30. Iliev V, Tomova D, Bilyarska L, Eliyas A, Petrov L (2006) Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution. Appl Catal B 63:266–271. https://doi.org/10.1016/j.apcatb.2005.10.014

    Article  CAS  Google Scholar 

  31. Iliev V, Tomova D, Bilyarska L, Tyuliev G (2007) Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J Mol Catal A Chem 263:32–38. https://doi.org/10.1016/j.molcata.2006.08.019

    Article  CAS  Google Scholar 

  32. Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ Sci 2:364–386. https://doi.org/10.1039/b816677n

    Article  CAS  Google Scholar 

  33. Ji F, Li C, Zhang J (2010) Hydrothermal synthesis of Li9Fe3(P2O7)3(PO4)2 nanoparticles and their photocatalytic properties under visible-light illumination. ACS Appl Mater Interface 2:1674–1678. https://doi.org/10.1021/am100189m

    Article  CAS  Google Scholar 

  34. Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H (2011) TiO2 nanoparticles assembled on grapheme oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701. https://doi.org/10.1016/j.carbon.2011.02.059

    Article  CAS  Google Scholar 

  35. Jo WK, Shin MH (2010) Applicability of a continuous-flow system inner-coated with S-doped titania for the photocatalysis of dimethyl sulfide at low concentrations. J Environ Manage 91:2059–2065. https://doi.org/10.1016/j.jenvman.2010.05.012

    Article  CAS  Google Scholar 

  36. Kamat PV (2013) Energy outlook for planet earth. J Phys Chem Lett 4:1727–1729. https://doi.org/10.1021/jz400902s

    Article  CAS  Google Scholar 

  37. Kavil YN, Shaban YA, Al Farawati RK, Orif MI, Zobidi M, Khan SU (2017) Photocatalytic conversion of CO2 into methanol over Cu-C/TiO2 nanoparticles under UV light and natural sunlight. J Photochem Photobiol A 347:244–253. https://doi.org/10.1016/j.jphotochem.2017.07.046

    Article  CAS  Google Scholar 

  38. Kavil YN, Shaban YA, Al Farawati RK, Orif MI, Zobidi M, Khan SU (2018) Efficient photocatalytic reduction of CO2 present in seawater into methanol over Cu/C-Co-doped TiO2. Water Air Soil Pollut 229:236. https://doi.org/10.1007/s11270-018-3881-3

    Article  CAS  Google Scholar 

  39. Keller V, Bernhardt P, Garin F (2003) Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. J Catal 215:129–138. https://doi.org/10.1016/S0021-9517(03)00002-2

    Article  CAS  Google Scholar 

  40. Khan SU, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245. https://doi.org/10.1126/science.1075035

    Article  CAS  Google Scholar 

  41. Khan MA, Woo SI, Yang O-B (2008) Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int J Hydrogen Energy 33:5345–5351. https://doi.org/10.1016/j.ijhydene.2008.07.119

    Article  CAS  Google Scholar 

  42. Kim J, Choi W, Park H (2010) Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid. Res Chem Intermed 36:127–140. https://doi.org/10.1007/s11164-010-0123-8

    Article  CAS  Google Scholar 

  43. Kim J, Hwang DW, Kim HG, Bae SW, Ji SM, Lee JS (2002) Nickel-loaded La2Ti2O7 as a bifunctional photocatalyst. Chem Commun 21:2488–2489. https://doi.org/10.1039/b208092c

    Article  CAS  Google Scholar 

  44. Kiwi J, Graetzel M (1979) Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water. J Am Chem Soc 101:7214–7217. https://doi.org/10.1021/ja00518a015

    Article  CAS  Google Scholar 

  45. Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534–1539. https://doi.org/10.1246/cl.2004.1534

    Article  CAS  Google Scholar 

  46. Kudo A, Nagane A, Tsuji I, Kato H (2002) H2 evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst NaInS2 with a layered structure. Chem Lett 31:882–883. https://doi.org/10.1246/cl.2002.882

    Article  Google Scholar 

  47. Kudo A, Ueda K, Kato H, Mikami I (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal Lett 53:229–230. https://doi.org/10.1023/A:1019034728816

    Article  CAS  Google Scholar 

  48. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241. https://doi.org/10.1021/jp204364a

    Article  CAS  Google Scholar 

  49. Kurihara T, Okutomi H, Miseki Y, Kato H, Kudo A (2006) Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading cocatalyst. Chem Lett 35:274–275. https://doi.org/10.1246/cl.2006.274

    Article  CAS  Google Scholar 

  50. Lai Y-K, Huang J-Y, Zhang H-F, Subramaniam V-P, Tang Y-X, Gong D-G, Sundar L, Sun L, Chen Z, Lin C-J (2010) Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J Hazard Mater 184:855–863. https://doi.org/10.1016/j.jhazmat.2010.08.121

    Article  CAS  Google Scholar 

  51. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772. https://doi.org/10.1016/j.carbon.2010.10.010

    Article  CAS  Google Scholar 

  52. Lee Y, Nukumizu K, Watanabe T, Takata T, Hara M, Yoshimura M, Domen K (2006) Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chem Lett 35:352–353. https://doi.org/10.1246/cl.2006.352

    Article  Google Scholar 

  53. Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143. https://doi.org/10.1039/b306813g

  54. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  Google Scholar 

  55. Li Y, Ma G, Peng S, Lu G, Li S (2008) Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 254:6831–6836. https://doi.org/10.1016/j.apsusc.2008.04.075

    Article  CAS  Google Scholar 

  56. Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H (2005) Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J Solid State Chem 178:3293–3302. https://doi.org/10.1016/j.jssc.2005.08.008

    Article  CAS  Google Scholar 

  57. Liao C-H, Huang C-W, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516. https://doi.org/10.3390/catal2040490

    Article  CAS  Google Scholar 

  58. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  59. Liqiang J, Dejun W, Baiqi W, Shudan L, Baifu X, Honggang F, Jiazhong S (2006) Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J Mol Catal A Chem 244:193–200. https://doi.org/10.1016/j.molcata.2005.09.020

    Article  CAS  Google Scholar 

  60. Lu S-y, Wu D, Wang Q-l, Yan J, Buekens AG, Cen K-F (2011) Photocatalytic decomposition on nano-TiO2: destruction of chloroaromatic compounds. Chemosphere 82:1215–1224. https://doi.org/10.1016/j.chemosphere.2010.12.034

    Article  CAS  Google Scholar 

  61. Luo HM, Takata T, Lee YG, Zhao JF, Domen K, Yan YS (2004) Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16:846–849. https://doi.org/10.1021/cm035090w

    Article  CAS  Google Scholar 

  62. Ma Y, Zhang J, Tian B, Chen F, Wang L (2010) Synthesis and characterization of thermally stable SM, N Co-doped TiO2 with highly visible light activity. J Hazard Mater 182:386–393. https://doi.org/10.1016/j.jhazmat.2010.06.045

    Article  CAS  Google Scholar 

  63. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861. https://doi.org/10.1021/jp070911w

    Article  CAS  Google Scholar 

  64. Matsumura M, Saho Y, Tsubomura H (1983) Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J Phys Chem 87:3807–3808. https://doi.org/10.1021/j100243a005

    Article  CAS  Google Scholar 

  65. NREL (1995) US Department of Energy, The Green Hydrogen report

    Google Scholar 

  66. Navarro RM, del Valle F, Villoria JA, Fierro JLG (2009) In: Serrano B, de Lasa H (eds). Elsevier Science Publishers

    Google Scholar 

  67. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  68. Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245. https://doi.org/10.1039/b502147b

    Article  CAS  Google Scholar 

  69. Ohmori T, Mametsuka H, Suzuki E (2000) Photocatalytic hydrogen evolution on InP suspension with inorganic sacrificial reducing agent. Int J Hydrogen Energy 25:953–955. https://doi.org/10.1016/S0360-3199(00)00014-8

    Article  CAS  Google Scholar 

  70. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A 265:115–121. https://doi.org/10.1016/j.apcata.2004.01.007

    Article  CAS  Google Scholar 

  71. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  72. Di Paola A, Garcia-Lopez E, Marci G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29. https://doi.org/10.1016/j.jhazmat.2011.11.050

    Article  CAS  Google Scholar 

  73. Pleskov YV (1990) Solar energy conversion: a photo-electrochemical approach. Springer, Berlin

    Book  Google Scholar 

  74. Raikar GN, Hardman PJ, Muryn CA, Vanderlaan G, Wincott PL, Thornton G (1991) Valence-band structure of TiO2 along the Γ-∑-M line. Solid State Commun 80:423–426. https://doi.org/10.1016/0038-1098(91)90719-C

    Article  CAS  Google Scholar 

  75. Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27. https://doi.org/10.1016/j.desal.2011.03.071

    Article  CAS  Google Scholar 

  76. Reber JF, Meier K (1984) Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem 88:5903–5913. https://doi.org/10.1021/j150668a032

    Article  CAS  Google Scholar 

  77. Reber JF, Meier K (1986) Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J Phys Chem 90:824–834. https://doi.org/10.1021/j100277a024

    Article  CAS  Google Scholar 

  78. Sasikala R, Shirole AR, Sudarsan V, Jagannath Sudakar C, Naik R, Rao R, Bharadwaj SR (2010) Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Appl Catal A 377:47–54. https://doi.org/10.1016/j.apcata.2010.01.039

    Article  CAS  Google Scholar 

  79. Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H, Inoue YJ (2004) Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J Phys Chem B 108:4369–4375. https://doi.org/10.1021/jp0373189

    Article  CAS  Google Scholar 

  80. Sato J, Kobayashi H, Inoue Y (2003) Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. II. Roles of geometric and electronic structures. J Phys Chem B 107:7970–7975. https://doi.org/10.1021/jp030021q

    Article  CAS  Google Scholar 

  81. Sato J, Saito S, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O=(M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photochem Photobiol A 148:85–89. https://doi.org/10.1016/S1010-6030(02)00076-X

    Article  CAS  Google Scholar 

  82. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts Chem. Phys Lett 72:83–86. https://doi.org/10.1016/0009-2614(80)80246-6

    Article  CAS  Google Scholar 

  83. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277:387–391. https://doi.org/10.1016/S0009-2614(97)00903-2

    Article  CAS  Google Scholar 

  84. Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54. https://doi.org/10.1016/0038-092X(80)90405-3

    Article  CAS  Google Scholar 

  85. See AK, Bartynski RAJ (1992) Inverse photoemission study of the defective TiO2 (110) surface. Vac Sci Technol A 10:2591. https://doi.org/10.1116/1.578105

    Article  CAS  Google Scholar 

  86. Selcuk MZ, Boroglu MS, Boz I (2012) Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. React Kinet Mech Catal 106:313–324. https://doi.org/10.1007/s11144-012-0434-4

    Article  CAS  Google Scholar 

  87. Shaban YA, Khan SUM (2007) Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water. Chem Phys 339:73–85. https://doi.org/10.1016/j.chemphys.2007.07.019

    Article  CAS  Google Scholar 

  88. Shaban YA, Khan SUM (2008) Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. Int J Hydrogen Energy 33:1118–1126. https://doi.org/10.1016/j.ijhydene.2007.11.026

    Article  CAS  Google Scholar 

  89. Shaban YA, Khan SUM (2009) Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations. J Solid State Electrochem 13:1025–1036. https://doi.org/10.1007/s10008-009-0823-4

    Article  CAS  Google Scholar 

  90. Shaban YA, Khan SUM (2010) Efficient photoelectrochemical splitting of water to H2 and O2 at nanocrystalline carbon modified (CM)-n-TiO2 thin films. Solid State Phenom 162:179–201. https://doi.org/10.4028/www.scientific.net/SSP.162.179

    Article  CAS  Google Scholar 

  91. Shaban YA, Khan SUM (2012) Photoresponse of visible light active CM -n-TiO2, HM-n-TiO2, CM-n-Fe2O3, and CM-p-WO3 towards water splitting reaction. Int J Photoenergy 2012. https://doi.org/10.1155/2012/749135

  92. Shibata M, Kudo A, Tanaka A, Domen K, Maruya K, Ohishi T (1987) Photocatalytic activities of layered Titanium compounds and their derivatives for H2 evolution from aqueous methanol solution. Chem Lett 16:1017–1018. https://doi.org/10.1246/cl.1987.1017

    Article  Google Scholar 

  93. Sun W, Zhang S, Liu Z, Wang C, Mao Z (2008) Studies on the enhanced photocatalytic hydrogen evolution over Pt/ PEG-modified TiO2 photocatalysts. Int J Hydrogen Energy 33:1112–1117. https://doi.org/10.1016/j.ijhydene.2007.12.059

    Article  CAS  Google Scholar 

  94. Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44:17–26. https://doi.org/10.1016/S0920-5861(98)00170-9

    Article  CAS  Google Scholar 

  95. Teh CM, Mohamed AR (2010) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloy Compd 509:1648–1660. https://doi.org/10.1016/j.jallcom.2010.10.181

    Article  CAS  Google Scholar 

  96. Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F (2007) Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys Rev B 75:035105. https://doi.org/10.1103/PhysRevB.75.035105

    Article  CAS  Google Scholar 

  97. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem Mater 13:4624–4628. https://doi.org/10.1021/cm0103390

    Article  CAS  Google Scholar 

  98. Wang J, Li J, Xie Y, Li C, Han G, Zhang L, Xu R, Zhang X (2010) Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+: YAlO3/ZnO-TiO2 composite. J Environ Manage 91:677–684. https://doi.org/10.1016/j.jenvman.2009.09.031

    Article  CAS  Google Scholar 

  99. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  100. Wang F, Zhang K (2011) Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A Chem 345:101–107. https://doi.org/10.1016/j.molcata.2011.05.026

    Article  CAS  Google Scholar 

  101. Wu Z, Sheng Z, Liu Y, Wang H, Tang N, Wang J (2009) Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. J Hazard Mater 164:542–548. https://doi.org/10.1016/j.jhazmat.2008.08.028

    Article  CAS  Google Scholar 

  102. Xu J, Ao Y, Chen M, Fu D (2009) Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. J Alloy Compd 484:73–79. https://doi.org/10.1016/j.jallcom.2009.04.156

    Article  CAS  Google Scholar 

  103. Xu J-j, Chen M-D, Fu D-g (2011) Preparation of bismuth oxide/titania composite particles and their photocatalytic activity to degradation of 4-chlorophenol. Trans Nonferrous Met Soc China 21:340–345. https://doi.org/10.1016/S1003-6326(11)60719-X

    Article  CAS  Google Scholar 

  104. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  105. Xu C, Shaban YA, Ingler Jr W B, Khan SUM (2007) Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting. Sol Energy Mater Sol C 91:938–943. https://doi.org/10.1016/j.solmat.2007.02.010

  106. Yanagida T, Sakata Y, Imamura H (2004) Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO. Chem Lett 33:726–727. https://doi.org/10.1246/cl.2004.726

    Article  CAS  Google Scholar 

  107. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336. https://doi.org/10.1021/nl900772q

    Article  CAS  Google Scholar 

  108. Yanhui A, Jingjing X, Songhe Z, Degang F (2010) A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Appl Surf Sci 256(2754):2758. https://doi.org/10.1016/j.apsusc.2009.11.023

    Article  CAS  Google Scholar 

  109. Yeh TF, Syu JM, Cheng C, Chang TH, Teng HS (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater 20:2255–2262. https://doi.org/10.1002/adfm.201000274

    Article  CAS  Google Scholar 

  110. Youngblood WJ, Lee SA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973. https://doi.org/10.1021/ar9002398

    Article  CAS  Google Scholar 

  111. Yuan J, Hu H, Chen M, Shi J, Shangguan W (2008) Promotion effect of Al2O3-SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde. Catal Today 139:140–145. https://doi.org/10.1016/j.cattod.2008.08.016

    Article  CAS  Google Scholar 

  112. Zhang L, Li L, Mou Z, Li X (2012) Study on microstructure and catalytic performance of B, C, N Co-dopped TiO2. Procedia Eng 27:552–556. https://doi.org/10.1016/j.proeng.2011.12.486

    Article  CAS  Google Scholar 

  113. Zheng N, Bu X, Vu H, Feng P (2005) Open-framework chalcogenides as visible-light photocatalysts for hydrogen generation from water. Angew Chem Int Ed 44:5299–5303. https://doi.org/10.1002/anie.200500346

    Article  CAS  Google Scholar 

  114. Zhou M, Yu J, Liu S, Zhai P, Jiang L (2008) Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J Hazard Mater 154:1141–1148. https://doi.org/10.1016/j.jhazmat.2007.11.021

    Article  CAS  Google Scholar 

  115. Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 14:260–269. https://doi.org/10.1016/j.cocis.2009.05.003

    Article  CAS  Google Scholar 

  116. Zong X, Sun C, Yu H, Chen ZG, Xing Z, Ye D, Lu GQ, Li X, Wang L (2013) Activation of photocatalytic water oxidation on N-Doped ZnO bundle-like nanoparticles under visible light. J Phys Chem C 117:4937–4942. https://doi.org/10.1021/jp311729b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Shaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaban, Y.A. (2020). Electrocatalysts for Photoelectrochemical Water Splitting. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_14

Download citation

Publish with us

Policies and ethics