Skip to main content

Microalgae-Based Systems Applied to Bioelectrocatalysis

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

The increasing demand by energy and the current need of the replace fossil resources it is leading the research and development (R&D) sector to search by renewable feedstock and renewable processes. Thus, major emphasis is being put into sustainable technologies and environmentally benign. In this context, microalgae have been extensively exploited for their versatility and capacity of the produce a broad spectrum of bioproducts. In particular, the viability of these microorganisms to generate electrical energy from organic and inorganic residues is an attractive technological route. The use of microalgae in electrochemical systems has the potential to produce bioelectricity associated with bioremediation and wastewater treatment. This integration could be advantageously exploited to the development of a self-sustaining biobased system. In this sense, this chapter is intended to provide a overview of various aspects associated with the bioelectricity production from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abourached C, English MJ, Liu H (2016) Wastewater treatment by Microbial Fuel Cell (MFC) prior irrigation water reuse. J Clean Prod 137:144–149. https://doi.org/10.1016/j.jclepro.2016.07.048 (Access. in: 30/04/19)

    Article  CAS  Google Scholar 

  2. Amulya K, Dahiya S, Venkata Mohan S (2016) Building a bio-based economy through waste remediation: innovation towards sustainable future. In: Bioremediation and bioeconomy. Elsevier, 497–521. https://doi.org/10.1016/b978-0-12-802830-8.00019-8 (Access. in: 13/04/19)

  3. Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, De los Ríos AP, Labjar N, … Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116. https://doi.org/10.1016/j.fuproc.2016.08.017 (Access. in: 13/03/19)

  4. Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM (2018) The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Biores Technol 261:350–360. https://doi.org/10.1016/j.biortech.2018.04.026 (Access. in: 25/03/19)

    Article  CAS  Google Scholar 

  5. Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ, Davies JM, Smith AG, Howe CJ, Fisher AC (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 4:4690–4698. https://doi.org/10.1039/c1ee02531g (Access. in: 29/03/19)

    Article  CAS  Google Scholar 

  6. Bruno LB, Jothinathan B, Rajkumar M (2018). Microbial fuel cells: fundamentals, types, significance and limitations. In: Microbial fuel cell technology for bioelectricity. Springer, Berlin, 23–48. https://doi.org/10.1007/978-3-319-92904-0 (Access. in: 25/03/19)

  7. Cao XX, Huang X, Lig P, Boon N, Fan MZ, Zhang L, Zhang XY (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501. https://doi.org/10.1039/b901069f (Access. in: 29/03/19)

    Article  CAS  Google Scholar 

  8. Chandra R, Sravan JS, Hemalatha M, Kishore Butti S, Venkata Mohan S (2017) Photosynthetic synergism for sustained power production with microalgae and photobacteria in a biophotovoltaic cell. Energy Fuels 31(7):7635–7644. https://doi.org/10.1021/acs.energyfuels.7b00486 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  9. Commault AS, Lear G, Novis P, Weld RJ (2014) Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell. NZ J Bot 52(1):48–59. https://doi.org/10.1080/0028825X.2013.870217 (Access. in: 15/04/19)

    Article  Google Scholar 

  10. Cui Y, Rashid N, Hu N, Rehman MSU, Han JI (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680. https://doi.org/10.1016/j.enconman.2013.12.032 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  11. de Caprariis B, De Filippis P, Di Battista A, Di Palma L, Scarsella M (2014) Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVs). Chem Eng Trans 38:523–528. https://doi.org/10.3303/CET1438088 (Access. in: 15/03/19)

    Article  Google Scholar 

  12. del Campo AG, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645. https://doi.org/10.1016/j.jpowsour.2013.05.110 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  13. del Campo AG, Perez JF, Cañizares P, Rodrigo MA, Fernandez FJ, Lobato J (2015) Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel 140:209–216. https://doi.org/10.1016/j.fuel.2014.09.087 (Access. in: 25/03/19)

    Article  CAS  Google Scholar 

  14. Deprá MC, dos Santos AM, Severo IA, Santos AB, Zepka LQ, Jacob-Lopes E (2018) Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality? BioEnergy Res 11(4):727–747 (Access. in: 30/04/19)

    Google Scholar 

  15. Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, … Ni BJ (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920. https://doi.org/10.1016/j.scitotenv.2018.05.136 (Access. in: 13/04/19)

  16. dos Santos AM, dos Santos AM, Sartori RB, Queiroz LZ, Jacob-Lopes E (2018) Influence of poultry and swine blood shocks on the performance of microalgal heterotrophic bioreactor. Desalin Water Treat 114:128–134. https://doi.org/10.5004/dwt.2018.22359 (Access. in: 30/04/19)

    Article  CAS  Google Scholar 

  17. Fischer F (2018) Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sustain Energy Rev 90:16–27. https://doi.org/10.1016/j.rser.2018.03.053 (Access. in: 13/03/19)

    Article  CAS  Google Scholar 

  18. Gajda I, Greenman J, Ieropoulos LA (2018) Recent advancements in real-world microbial fuel cell applications. Current Opin Electrochem 11:78–83. https://doi.org/10.1016/j.coelec.2018.09.006 (Access. in: 15/04/19)

    Article  CAS  Google Scholar 

  19. Gajda I, Greenman J, Melhuish C, Ieropoulos I (2013) Photosynthetic cathodes for microbial fuel cells. Int J Hydrogen Energy 38(26):11559–11564. https://doi.org/10.1016/j.ijhydene.2013.02.111 (Access. in: 16/04/19)

    Article  CAS  Google Scholar 

  20. Gajda I, Stinchcombe A, Greenman J, Melhuish C, Ieropoulos I (2014) Algal ‘lagoon’effect for oxygenating MFC cathodes. Int J Hydrogen Energy 39(36):21857–21863. https://doi.org/10.1016/j.ijhydene.2014.05.173 (Access. in: 19/03/19)

    Article  CAS  Google Scholar 

  21. Ghosh RS, Ghangrekar MM (2015) Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. Biores Technol 176:8–14. https://doi.org/10.1016/j.biortech.2014.10.158 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  22. Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Biores Technol 154:171–177. https://doi.org/10.1016/j.biortech.2013.12.049 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  23. Gude, V. G. (2016). Microbial fuel cells for wastewater treatment and energy generation. In Microbial Electrochemical and Fuel Cells (pp. 247–285). Woodhead Publishing. https://doi.org/10.1016/b978-1-78242-375-1.00008-3 (Access. in: 13/03/19)

  24. Hayes P (2014) Chemical Reaction Kinetics. Treatise on Process Metallurgy 1:831–852. https://doi.org/10.1016/B978-0-08-096986-2.00015-1 (Access. in: 28/03/19)

    Article  CAS  Google Scholar 

  25. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74(1):78–82. https://doi.org/10.1016/j.bioelechem.2008.07.007 (Access. in: 23/03/19)

    Article  CAS  Google Scholar 

  26. Hou Q, Nie C, Pei H, Hu W, Jiang L, Yang Z (2016) The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate. Biores Technol 218:902–908. https://doi.org/10.1016/j.biortech.2016.07.035 (Access. in: 15/03/19)

    Article  CAS  Google Scholar 

  27. Huarachi-Olivera R, Dueñas-Gonza A, Yapo-Pari U, Vega P, Romero-Ugarte M, Tapia J, … Esparza M (2018) Bioelectrogenesis with microbial fuel cells (MFCs) using the microalga Chlorella vulgaris and bacterial communities. Electron J Biotechnol 31:34–43. https://doi.org/10.1016/j.ejbt.2017.10.013 (Access. in: 18/03/19)

  28. Jadhav DA, Jain SC, Ghangrekar MM (2017). Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells. Appl Biochem Biotechnol 183(3):1076–1092 (Access. in: 16/04/19)

    Google Scholar 

  29. Jeon HJ, Seo KW, Lee SH, Yang YH, Kumaran RS, Kim S, … Kim HJ (2012) Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresour Technol 109:308–311. https://doi.org/10.1016/j.biortech.2011.06.039 (Access. in: 16/03/19)

  30. Jiang HM, Luo SJ, Shi XS, Dai M, Guo RB (2013) A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation. J Central South Univ 20(2):488–494 (Access. in: 18/03/19)

    Google Scholar 

  31. Jothinathan D, Mylsamy P, Bruno BL (2018) Electricigens: role and prominence in microbial fuel cell performance. In: Microbial fuel cell technology for bioelectricity. Springer, Berlin, 169–186. https://doi.org/10.1007/978-3-319-92904-0 (Access. in: 11/04/19)

  32. Juang D, Yang P, Chou H, Chiu L (2011) Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotech Lett 33:2147. https://doi.org/10.1007/s10529-011-0690-9 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  33. Kakarla R, Min B (2014) Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrogen Energy 39(19):10275–10283. https://doi.org/10.1016/j.ijhydene.2014.04.158 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  34. Kim BH, Kim HJ, Hyun MS, Park DH (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367 (Access. in: 14/04/19)

    Google Scholar 

  35. Kim H, Kim B, Kim J, Yu J (2015) Effect of organic loading rates and influent sources on energy production in multi-baffled single chamber microbial fuel cell. Desalin Water Treat 56:1217–1222. https://doi.org/10.1080/19443994.2014.950986 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  36. Kondaveeti S, Choi KS, Kakarla R, Min B (2014) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front Environ Sci Eng 8(5):784–791 (Access. in: 13/04/19)

    Google Scholar 

  37. Lakaniemi AM, Tuovinen OH, Puhakka JA (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. BioEnergy Res 5(2):481–491 (Access. in: 13/04/19)

    Google Scholar 

  38. Lan JCW, Raman K, Huang CM, Chang CM (2013) The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochem Eng J 78:39–43. https://doi.org/10.1016/j.bej.2013.02.007 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  39. Lee DJ, Chang JS, Lai JY (2015) Microalgae-microbial fuel cell: a mini review. Bioresour Technol 198:891–895. https://doi.org/10.1016/j.biortech.2015.09.061 (Access. in: 27/03/19)

  40. Li M, Zhou M, Luo J, Tan C, Tian X, Su P, Gu T (2019) Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Biores Technol 280:95–103. https://doi.org/10.1016/j.biortech.2019.02.038 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  41. Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T (2018) Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.04.010 (Access. in: 13/04/19)

    Article  Google Scholar 

  42. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924. https://doi.org/10.1039/c3ee43106a (Access. in: 30/04/19)

    Article  CAS  Google Scholar 

  43. Majumdar P, Pant D, Patra S (2017) Integrated photobioelectrochemical systems: a paradigm shift in artificial photosynthesis. Trends Biotechnol 35(4):285–287. https://doi.org/10.1016/j.tibtech.2017.01.004 (Access. in: 14/04/19)

    Article  CAS  Google Scholar 

  44. Maroneze MM, Queiroz MI (2018) Microalgal production systems with highlights of bioenergy production. In: Energy from microalgae. Springer, Cham, pp 5–34 (Access. in: 30/04/19)

    Google Scholar 

  45. Maroneze MM, Siqueira SF, Vendruscolo RG, Wagner R, de Menezes CR, Zepka LQ, Jacob-Lopes E (2016) The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Biores Technol 219:493–499. https://doi.org/10.1016/j.biortech.2016.08.003 (Access. in: 03/05/19)

    Article  CAS  Google Scholar 

  46. Modestra AJ, Navaneeth B, Venkata Mohan S (2015) Bio-electrocatalytic reduction of CO2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J CO2 Util 10:78–87. https://doi.org/10.1016/j.jouou.2015.04.001 (Access. in: 25/04/19)

  47. Nancharaiah YV, Mohan SV, Lens PNL (2016) Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Biores Technol 215:173–185. https://doi.org/10.1016/j.biortech.2016.03.129 (Access. in: 12/04/19)

    Article  CAS  Google Scholar 

  48. Neto SA, Reginatto V, De Andrade AR (2018) Microbial fuel cells and wastewater treatment. In: Electrochemical water and wastewater treatment, pp 305–331. https://doi.org/10.1016/b978-0-12-813160-2.00012-2 (Access. in: 13/04/19)

  49. Nguyen HTN, Kakarla R, Min B (2017) Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int J Hydrogen Energy 42:29433–29442. https://doi.org/10.1016/j.ijhydene.2017.10.011 (Access. in: 29/03/2019)

    Article  CAS  Google Scholar 

  50. Niessen J, Schroder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun, 955–958. https://doi.org/10.1016/j.jouou.2015.04.001 (Access. in: 25/04/19)

  51. Nishio K, Hashimoto K, Watanabe K (2013) Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J Biosci Bioeng 115(4):412–417. https://doi.org/10.1016/j.jbiosc.2012.10.015 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  52. Paidar M, Fateev V, Bouzek K (2016) Membrane electrolysis—history, current status and perspective. Electrochim Acta 209:737–756. https://doi.org/10.1016/j.electacta.2016.05.209 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  53. Pant D, Singh A, Bogaert GV, Gallego YA, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew Sustain Energy Rev 15:1305–1313. https://doi.org/10.1016/j.rser.2010.10.005 (Access. in: 12/04/19)

    Article  CAS  Google Scholar 

  54. Pant P, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores Technol 101(6):1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017 (Access. in: 14/04/19)

    Article  CAS  Google Scholar 

  55. Parkash A (2016) Microbial fuel cells: a source of bioenergy. J Microb Biochem Technol 8(3):247–255. https://doi.org/10.4172/1948-5948.1000293 (Access. in: 16/04/19)

    Article  CAS  Google Scholar 

  56. Peng X, Pan X, Wang X, Li D, Huang P, Qiu G, … Chu X (2018) Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis. Bioresour Technol 249:844–850. https://doi.org/10.1016/j.biortech.2017.10.068 (Access. in: 12/04/19)

  57. Penteado ED, Fernandez-Marchante CM, Zaiat M, Gonzalez ER, Rodrigo MA (2018) Optimization of the performance of a microbial fuel cell using the ratio electrode-surface area/anode-compartment volume. Braz J Chem Eng 35(1):141–146. https://doi.org/10.1590/0104-6632.20180351s20160411(Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  58. Philips J, Verbeeck K, Rabaey K, Arends JBA (2016) Electron transfer mechanisms in biofilms. In: Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing, 67–114. https://doi.org/10.1016/b978-1-78242-375-1.00001-0 (Access. in: 14/04/19)

  59. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London. Ser B Contain Pap Biol Character 84(571):260–276. https://doi.org/10.1098/rspb.1911.0073 (Access. in: 14/03/19)

  60. Powell EE, Evitts RW, Hill GA, Bolster JC (2011) A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sour Part A Recover Util Environ Effects 33(5):440–448. https://doi.org/10.1080/15567030903096931 (Access. in: 16/04/19)

    Article  CAS  Google Scholar 

  61. Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Biores Technol 101(24):9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082 (Access. in: 23/03/19)

    Article  CAS  Google Scholar 

  62. Rachinski S, Carubelli A, Mangoni AP, Mangrich AS (2010) Microbial fuel cells used in the production of electricity from organic waste: a perspective of future. Química Nova 33(8). https://doi.org/10.1590/s0100-40422010000800026 (Access. in: 13/04/19)

  63. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756. https://doi.org/10.1016/j.aej.2015.03.031 (Access. in: 16/04/19)

    Article  Google Scholar 

  64. Raschitor A, Soreanu G, Fernandez Marchante CM, Lobato J, Canizares P, Cretescu I, Rodrigo MA (2015) Bioelectro-Claus processes using MFC technology: influence of co-substrate. Biores Technol 189:94–98. https://doi.org/10.1016/j.biortech.2015.03.115 (Access. in: 29/03/19)

    Article  CAS  Google Scholar 

  65. Rashid N, Cui YF, Rehman MSU, Han JI (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456:91–94. https://doi.org/10.1016/j.scitotenv.2013.03.067 (Access. in: 20/03/19)

    Article  CAS  Google Scholar 

  66. Rathinavel L, Jothinathan D, Sivasankar V, Agastian P, Mylsamy P (2018) Algal microbial fuel cells—nature’s perpetual energy resource. In: Microbial fuel cell technology for bioelectricity. Springer, Berlin, pp. 81–116. https://doi.org/10.1007/978-3-319-92904-0_5 (Access. in: 16/03/19)

  67. Reddy CN, Kakarla R, Min B (2019) Algal biocathodes. In: Microbial electrochemical technology. Elsevier, pp 525–547. https://doi.org/10.1016/b978-0-444-64052-9.00021-2 (Access. in: 13/03/19)

  68. Ren H, Lee HS, Chae J (2012) Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid 13(3):353–381 (Access. in: 22/03/19)

    Google Scholar 

  69. Saba B, Christy AD, Yu Z, Co AC (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sustain Energy Rev 73:75–84. https://doi.org/10.1016/j.rser.2017.01.115 (Access. in: 13/03/19)

    Article  CAS  Google Scholar 

  70. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sour 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109 (Access. in: 18/04/19)

    Article  CAS  Google Scholar 

  71. Saratale RG, Kuppam C, Mudhoo A, Saratale GD, Periyasamy S, Zhen G, … Kumar G (2017) Bioelectrochemical systems using microalgae—a concise research update. Chemosphere 177:35–43. https://doi.org/10.1016/j.chemosphere.2017.02.132 (Access. in: 13/03/19)

  72. Scott K (2016) An introduction to microbial fuel cells. In: Microbial electrochemical and fuel cells: fundamentals and applications, 3–28. Woodhead Publishing. https://doi.org/10.1016/b978-1-78242-375-1.00001-0 (Access. in: 13/03/19)

  73. Scott K, Yu EH (eds) (2015) Microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing (Access. in: 13/03/19)

    Google Scholar 

  74. Sharma Y, Li BK (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol, 101–1844. https://doi.org/10.1021/es0491026 (Access. in: 25/04/19)

  75. Shukla M, Kumar S (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sustain Energy Rev 82:402–414. https://doi.org/10.1016/j.rser.2017.09.067 (Access. in: 13/03/19)

    Article  CAS  Google Scholar 

  76. Sillanpää M, Shestakova M (2017) Electrochemical water treatment methods: fundamentals, methods and full scale applications. Butterworth-Heinemann. https://doi.org/10.1016/b978-0-12-811462-9.00003-7 (Access. in: 13/04/19)

  77. Sivakumar P, Ilango K, Praveena N, Sircar A, Balasubramanian R, Sakthisaravanan A, Kannan R (2018) Algal fuel cell. In: Microalgal biotechnology. IntechOpen. https://doi.org/10.5772/intechopen.74285 (Access. in: 13/03/19)

  78. Sivasankar V, Mylsamy P, Omine K (eds) (2018) Microbial fuel cell technology for bioelectricity. Springer, Berlin. https://doi.org/10.1007/978-3-319-92904-0 (Access. in: 21/03/19)

  79. Slate AJ, Whitehead KA, Brownson DA, Banks CE (2019) Microbial fuel cells: an overview of current technology. Renew Sustain Energy Rev 101:60–81. https://doi.org/10.1016/j.rser.2018.09.044 (Access. in: 18/04/19)

    Article  CAS  Google Scholar 

  80. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Biores Technol 102(3):3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047 (Access. in: 25/04/19)

    Article  CAS  Google Scholar 

  81. Trapero JR, Horcajada L, Linares JJ, Lobato J (2017) Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Appl Energy 185(1):698–707. https://doi.org/10.1016/j.apenergy.2016.10.109 (Access. in: 16/04/19)

    Article  CAS  Google Scholar 

  82. U.S. Energy Information Administration (2019) Levelized cost and levelized avoided cost of new generation resources in the annual energy outlook 2019. Annual Energy Outlook. Available in: https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf (Access. in: 29/04/19)

  83. Ummalyma SB, Sahoo D, Pandey A, Prajeesh KV (2019) Microalgae-microbial fuel cell. Microb Fuel Cells Mater Appl 46:1–20. https://doi.org/10.21741/9781644900116-1 (Access. in: 17/04/19)

    Article  Google Scholar 

  84. Venkata Mohan S (2014) Sustainable waste remediation: a paradigm shift towards environmental biorefinery. Chem Eng World 49(12):29–35. https://doi.org/10.1007/978-81-322-2598-0 (Access. in: 15/04/19)

    Article  Google Scholar 

  85. Venkata Mohan S, Butti SK, Amulya K Dahiya S, Modestra JA (2016) Waste biorefinery: a new paradigm for a sustainable bioelectro economy. Trends Biotechnol 34(11):852–855)

    Google Scholar 

  86. Verma R, Srivastava A (2018) Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ Dev. https://doi.org/10.1016/j.envdev.2018.07.004 (Access. in: 25/04/19)

    Article  Google Scholar 

  87. Vidyashankar S, Ravishankar GA (2016) Algae-based bioremediation: bioproducts and biofuels for biobusiness. In: Bioremediation and bioeconomy. Elsevier, 2457–493. https://doi.org/10.1016/b978-0-12-802830-8.00019-8 (Access. in: 14/04/19)

  88. Wang DB, Song TS, Guo T, Zeng Q, Xie J (2014) Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. Int J Hydrogen Energy 39(25):13224–13230. https://doi.org/10.1016/j.ijhydene.2014.06.141 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  89. Wang ZJ, Deng H, Chen LH, Xiao Y, Zhao F (2013) In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes. Biores Technol 90:132–387. https://doi.org/10.1016/j.biortech.2012.11.026)

    Article  CAS  Google Scholar 

  90. Wei L, Han H, Shen J (2013) Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell. Int J Hydrogen Energy 38(25):11110–11116. https://doi.org/10.1016/j.ijhydene.2013.01.019 (Access. in: 25/03/19)

    Article  CAS  Google Scholar 

  91. Wu XY, Song TS, Zhu XJ, Wei P, Zhou CC (2013) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Appl Biochem Biotechnol 171(8):2082–2092 (Access. in: 19/03/19)

    Google Scholar 

  92. Wu YC, Wang ZJ, Zheng Y, Xiao Y, Yang ZH, Zhao F (2014) Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy 116:86–90. https://doi.org/10.1016/j.apenergy.2013.11.066 (Access. in: 13/04/19)

    Article  CAS  Google Scholar 

  93. Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sustain Energy Rev 37:550–559. https://doi.org/10.1016/j.rser.2014.05.066 (Access. in: 16/04/19)

    Article  CAS  Google Scholar 

  94. Xu C, Poon K, Choi MM, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22(20):15621–15635 (Access. in: 20/03/19)

    Google Scholar 

  95. Yan J, Zhu L, Chaloux BL, Hickner MA (2017) Anion exchange membranes by bromination of tetramethylbiphenol-based poly (sulfone) s. Polymer Chemistry 8(16):2442–2449. https://doi.org/10.1039/C7PY00026J (Access. in: 22/03/19)

    Article  CAS  Google Scholar 

  96. Yang Z, Pei H, Hou Q, Jiang L, Zhang L, Nie C (2018) Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chem Eng J 332:277–285. https://doi.org/10.1016/j.cej.2017.09.096 (Access. in: 15/03/19)

    Article  CAS  Google Scholar 

  97. Yu J, Seon J, Park Y, Cho S, Lee T (2012) Electricity generation and microbial community in a submerged exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Biores Technol 117:172–179. https://doi.org/10.1016/j.biortech.2012.04.078 (Access. in: 24/04/19)

    Article  CAS  Google Scholar 

  98. Zhang ER, Liu L, Cui YY (2013) Effect of pH on the performance of the anode in microbial fuel cells. In: Advanced materials research, vol. 608. Trans Tech Publications, pp. 884–888. doi:10.4028/www.scientific.net/AMR.608-609.884 (Access. in: 23/03/19)

    Google Scholar 

  99. Zhang Y, Sun J, Hu Y, Wang Z, Li S (2014) Effects of periodically alternating temperatures on performance of single-chamber microbial fuel cells. Int J Hydrogen Energy 39(15):8048–8054. https://doi.org/10.1016/j.ijhydene.2014.03.110 (Access. in: 25/03/19)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Jacob-Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, R.R., Sartori, R.B., Severo, I.A., Deprá, M.C., Zepka, L.Q., Jacob-Lopes, E. (2020). Microalgae-Based Systems Applied to Bioelectrocatalysis. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_10

Download citation

Publish with us

Policies and ethics