Skip to main content

Gaps and Incompactness

  • Chapter
  • First Online:
Combinatorial Set Theory of C*-algebras

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1109 Accesses

Abstract

Gaps in coronas are studied in this chapter. We show that the rich and well-studied gap spectrum of \(\mathscr P({\mathbb N})/ \operatorname {\mathrm {Fin}}\) embeds into the corona of every σ-unital, non-unital, C-algebra. This is used to prove two incompactness results. The Choi–Christensen construction of Kadison–Kastler near, but nonisomorphic, C-algebras is recast in terms of gaps: every gap in the Calkin algebra can be used to produce a family of examples of this sort. Every uniformly bounded representation of a countable, amenable, group in the Calkin algebra is unitarizable. Using a Luzin family, one defines a uniformly bounded, non-unitarizable, representation of \(\bigoplus _{\aleph _1} {\mathbb Z}/2{\mathbb Z}\) in the Calkin algebra. This example yields an amenable operator algebra not isomorphic to a C-algebra. This is a result of the author, Choi, and Ozawa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We emphasize that c is not required to be self-adjoint.

  2. 2.

    “Separable” would be more accurate but this word is too similar to “separated.”

  3. 3.

    Its second part is false for separable C-algebras (see [137]).

  4. 4.

    As pointed out after Definition 14.4.1 and Exercise 14.6.7, a twist of projections does not provide a proof of (3).

  5. 5.

    This result will be refined in Section 15.5, to which this section serves as a warm-up.

References

  1. Bice, T., Koszmider, P.: A note on the Akemann–Doner and Farah–Wofsey constructions. Proc. Am. Math. Soc. 145(2), 681–687 (2017)

    Article  MathSciNet  Google Scholar 

  2. Choi, M.-D., Christensen, E.: Completely order isomorphic and close C-algebras need not be *-isomorphic. Bull. Lond. Math. Soc. 15(6), 604–610 (1983)

    Article  MathSciNet  Google Scholar 

  3. Choi, Y., Farah, I., Ozawa, N.: A nonseparable amenable operator algebra which is not isomorphic to a C-algebra. Forum Math. Sigma 2, 12 pages (2014)

    Google Scholar 

  4. Christensen, E., Sinclair, A.M., Smith, R.R., White, S.A., Winter, W.: The spatial isomorphism problem for close separable nuclear C-algebras. Proc. Natl. Acad. Sci. U. S. A. 107(2), 587–591 (2010)

    Article  MathSciNet  Google Scholar 

  5. Effros, E.G.: Order ideals in a C-algebra and its dual. Duke Math. J. 30(3), 391–411 (1963)

    Article  MathSciNet  Google Scholar 

  6. Farah, I., Wofsey, E.: Set theory and operator algebras. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory 2006–2010, pp. 63–120. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  7. Johnson, B.E.: A counterexample in the perturbation theory of C-algebras. Can. Math. Bull. 25(3), 311–316 (1982)

    Article  MathSciNet  Google Scholar 

  8. Kadets, M.I.: Note on the gap between subspaces. Funct. Anal. Appl. 9(2), 156–157 (1975)

    Article  Google Scholar 

  9. Kadison, R.V., Kastler, D.: Perturbations of von Neumann algebras. I. Stability of type. Am. J. Math. 94, 38–54 (1972). MR 0296713

    Article  MathSciNet  Google Scholar 

  10. Pedersen, G.K.: C-algebras and their automorphism groups. London Mathematical Society Monographs, vol. 14. Academic Press, London (1979)

    Google Scholar 

  11. Pisier, G.: Are unitarizable groups amenable?. In: Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Progress in Mathematics, vol. 248, pp. 323–362. Birkhäuser, Basel (2005)

    Google Scholar 

  12. Vaccaro, A.: Obstructions to lifting abelian subalgebras of corona algebras. Pac. J. Math. (to appear)

    Google Scholar 

  13. Vignati, A.: An algebra whose subalgebras are characterized by density. J. Symb. Log. 80(3), 1066–1074 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wofsey, E.: P(ω)∕fin and projections in the Calkin algebra. Proc. Am. Math. Soc. 136(2), 719–726 (2008)

    Article  MathSciNet  Google Scholar 

  15. Zamora-Aviles, B.: Gaps in the poset of projections in the Calkin algebra. Isr. J. Math. 202(1), 105–115 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farah, I. (2019). Gaps and Incompactness. In: Combinatorial Set Theory of C*-algebras. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-27093-3_14

Download citation

Publish with us

Policies and ethics