Skip to main content

Abstract

The diverse properties, applications and safety of natural gums make their widespread use in food and pharmaceutical industries that include their safe oral consumption in the form of food additives (thickeners, emulsifiers, sweeteners etc.), as binders and drug release modified gums (drug carriers) in pharmaceutical dosage forms. Natural gums are polysaccharides obtained usually as plant exudates. They contain various sugars other than glucose and having significant quantities of oxidized groups in adjunct to their normal polyhydroxy format. The polysaccharide gums are considered to be one of the best abundant industrial raw materials due to their sustainability, biodegradability and safety. The phenomenon of uncontrolled rates of hydration, pH dependent solubility, thickening, drop in viscosity on storage, and the possibility of microbial contamination are some problems associated with the use of natural gums. Furthermore, interaction of materials with mucosal layer of the gastrointestinal tract, nasal pathway or airway is known as mucoadhesion. Many polysaccharides do possess mucoadhesive properties and their use for specific oral drug delivery has been identified by many investigators by modifying them (Rana et al. 2011). The use of modified gums for microencapsulation has increased in the nutraceutical industry. The structures of polysaccharides or dietary gums are modified/derivatized by various methods that involves attachment of wide variety of functional groups to the natural gums. This may include the introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures that can alter the properties of materials based on these substances. For example, attachment of carboxyl groups, carboxymethyl groups, polyacrylamide groups, phosphate groups etc., has all been extensively investigated for such purposes. The introduction of new functional groups changed the charges, aggregation state of molecular chains, hydrophilic–hydrophobic capability, complexing capacity, stimuli-response ability, and rheological behavior of gums, and so the application domain of gums was greatly extended. But, the derivatization of gums can only improve the properties to a finite degree because the number of introduced functional groups is less and the molecular weight of gums cannot be increased by the simple modification with small molecules. Graft polymerization is anticipated to be a quite promising technique for modifying the properties of a polymer, and the modification of natural polymer materials by graft copolymerization. It offers the opportunity to tailor their physical and chemical properties, functionalize biopolymers to impart desirable properties onto them, and combine the advantages of both natural and synthetic polymers (Battaerd and Tregear 1967 and Kalia et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad, L. V. (2010). Radiolysis studies of kappa carrageenan for bio based materials development. (Thesis). Department of Nuclear Engineering and Management, University of Tokyo.

    Google Scholar 

  • Ahmad, A., Munir, B., Muhammad, A., Shaukat, B., Muhammad, A., & Tahira, T. (2012). Perspective of β-glucan as functional ingredient for food industry. Journal of Nutrition & Food Sciences, 2(2), 133–139.

    Article  CAS  Google Scholar 

  • Ahmed, Z., Wang, Y., Anjum, N., Ahmad, A., & Khan, S. T. (2013). Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir—Part II. Food Hydrocolloids, 30(1), 343–350.

    Article  CAS  Google Scholar 

  • Aida, F. M. N. A., Shuhaimi, M., Yazid, M., & Maaruf, A. G. (2009). Mushroom as a potential source of prebiotics: A review. Trends in Food Science and Technology, 20(11–12), 567–575.

    Article  CAS  Google Scholar 

  • Battaerd, H. A., & Tregear, G. W. (1967). Graft copolymers (Vol. 16). New York, NY: Interscience Publishers.

    Google Scholar 

  • Betancur-Ancona, D., Pacheco-Aguirre, J., Castellanos-Ruelas, A., & Chel-Guerrero, L. (2011). Microencapsulation of papain using carboxymethylated flamboyant (Delonixregia) seed gum. Innovative Food Science and Emerging Technologies, 12(1), 67–72.

    Article  CAS  Google Scholar 

  • Bhardwaj, T. R., Kanwar, M., Lal, R., & Gupta, A. (2000). Natural gums and modified natural gums as sustained-release carriers. Drug Development and Industrial Pharmacy, 26(10), 1025–1038.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, C. S., & Cleary, L. J. (2007). Utilisation of glucagel in the β-glucan enrichment of breads: A physicochemical and nutritional evaluation. Food Research International, 40(2), 291–296.

    Article  CAS  Google Scholar 

  • Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2013). Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks. Plant Foods for Human Nutrition, 68(1), 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Burkus, Z., & Temelli, F. (2000). Stabilization of emulsions and foams using barley beta-glucan. Food Research International, 33, 27–33.

    Article  CAS  Google Scholar 

  • Cavallero, A., Empilli, S., Brighenti, F., & Stanca, A. (2002). High (1→3,1→4)- β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science, 36, 59–66.

    Article  CAS  Google Scholar 

  • Choi, J. S., Kim, H., Ho Jung, M., Hong, S., & Song, J. (2010). Consumption of barley β-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Molecular Nutrition & Food Research, 54, 1004.

    Article  CAS  Google Scholar 

  • Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerstrom, R., Matto, J., … Poutanen, K. (2002). In vitro fermentation of cereal dietary carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture, 82, 781–789.

    Article  CAS  Google Scholar 

  • Dawkins, N. L., & Nnanna, I. A. (1995). Studies on oat gum (1→3, 1→4)-β-d-glucan: Composition, molecular weight estimation and rheological properties. Food Hydrocolloids, 9(1), 1–7.

    Article  CAS  Google Scholar 

  • Delaney, B., Nicolosi, R. J., Wilson, T. A., Carlson, T., Frazer, S., Zheng, G. H., … Knutson, N. (2003). Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. Journal of Nutrition, 133, 468–475.

    Article  PubMed  Google Scholar 

  • Dongowski, G., Huth, M., Gebhardt, E., & Flamme, W. (2002). Dietary fiber rich barley products beneficially affect the intestinal tract of rats. Journal of Nutrition, 132, 3704–3714.

    Article  CAS  PubMed  Google Scholar 

  • Du, B., & Xu, B. J. (2014). Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β-glucans from different sources with various molecular weight. Bioactive Carbohydrates and Dietary Fibre, 3, 11–16.

    Article  CAS  Google Scholar 

  • Flander, L., Salmenkallio-Marttila, M., Suortti, T., & Autio, K. (2007). Optimization of ingredients and baking process for improved wholemeal oat bread quality. LWT - Food Science and Technology, 40, 860–870.

    Article  CAS  Google Scholar 

  • Goyal, P., Kumar, V., & Sharma, P. (2007). Carboxymethylation of tamarind kernel powder. Carbohydrate Polymers, 69(2), 251–255.

    Article  CAS  Google Scholar 

  • Granfeldt, Y., Nyberg, L., & Bjöarck, I. (2008). Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects. European Journal of Clinical Nutrition, 62, 600–607.

    Article  CAS  PubMed  Google Scholar 

  • Hallfrisch, J., Schofield, D. J., & Behall, K. M. (2003). Physiological responses of men and women to barley and oat extracts (NutrimX). II. Comparison of glucose and insulin responses. Cereal Chemistry, 80, 80–83.

    Article  CAS  Google Scholar 

  • Hlebowicz, J., Darwiche, G., Björgell, O., & AlmĂ©r, L. (2008). Effect of muesli with 4 g Oat β-glucan on postprandial blood glucose, gastric emptying and satiety in healthy subjects: A randomized crossover trial. Journal of the American College of Nutrition, 27(4), 470–475.

    Article  CAS  PubMed  Google Scholar 

  • Hongbo, T., Yanping, L., Min, S., & Xiguang, W. (2012). Preparation and property of crosslinking guar gum. Polymer Journal, 44(3), 211.

    Article  CAS  Google Scholar 

  • Izydorczyk, M., & Dexter, J. (2008). Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A review. Food Research International, 41(9), 850–868.

    Article  CAS  Google Scholar 

  • Izydorczyk, M., Hussain, A., & MacGregor, A. (2001). Effect of barley and barley components on rheological properties of wheat dough. Journal of Cereal Science, 34(3), 251–260.

    Article  CAS  Google Scholar 

  • Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., WĂĽrsch, P., & Vuksan, V. (2002). Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type-2 diabetes. European Journal of Clinical Nutrition, 56, 622–628.

    Article  CAS  PubMed  Google Scholar 

  • Jinshui, W., Cristina, M. R., & De-Barbera, C. B. (2002). Effect of the addition of different fibers on wheat dough performance and bread quality. Food Chemistry, 79, 221–226.

    Article  Google Scholar 

  • Kabir, G. I., Yagen, B., Penhasi, A., & Rubinstein, A. (1998). Low swelling, crosslinked guar and its potential use as colon-specific drug carrier. Pharmaceutical Research, 15(7), 1019–1025.

    Article  Google Scholar 

  • Kalia, S., Kaith, B. S., & Kaur, I. (Eds.). (2011). Cellulose fibers: Bio-and nano-polymer composites: Green chemistry and technology. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Kang, S. A., Jang, K. H., Hong, K., Choi, W. A., & Lee, I. Y. (2003). Effects of dietary beta-glucan on serum lipids and leptin levels in the diet-induced obese rats. FASEB Journal, 17, A1141.

    CAS  Google Scholar 

  • Karaduman, D., Eren, B., & Keles, O. N. (2010). The protective effect of beta-1,3-D-glucan on taxol-induced hepatotoxicity: A histopathological and stereological study. Drug and Chemical Toxicology, 33(1), 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Kerckhoffs, D. A. J. M., Hornstra, G., & Mensink, R. P. (2003). Cholesterol lowering effect of β-glucan from oat bran in mildly hypercholersterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. American Journal of Clinical Nutrition, 78, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Kaneko, T., Qin, L. Q., Wang, J., & Wang, Y. (2003). Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women. Nutrition, 19, 11–12.

    Article  CAS  Google Scholar 

  • Martinez, C. S., Ribotta, P. D., LeĂłn, A. E., & Yildiz, F. (2016). Influence of the addition of Amaranthus mantegazzianus flour on the nutritional and health properties of pasta. Cogent Food & Agriculture, 2(1), 1–12.

    Article  CAS  Google Scholar 

  • Mishra, A., & Malhotra, A. V. (2012). Graft copolymers of xyloglucan and methyl methacrylate. Carbohydrate Polymers, 87(3), 1899–1904.

    Article  CAS  Google Scholar 

  • Mohod, A. V., & Gogate, P. R. (2011). Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrasonics Sonochemistry, 18(3), 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Ogutu, F. O., Mu, T. H., Elahi, R., Zhang, M., & Sun, H. N. (2015). Ultrasonic modification of selected polysaccharides-review. Journal of Food Processing & Technology, 6(5), 1.

    Article  CAS  Google Scholar 

  • Ă–stman, E., Rossi, E., Larsson, H., Brighenti, F., & Bjorck, I. (2006). Glucose and insulin response in healthy men to barley bread with different levels of (1→3) (1→4)-β-glucans; predictions using fluidity measurements of in vitro enzyme digests. Journal of Cereal Science, 43, 230–235.

    Article  CAS  Google Scholar 

  • Rana, V., Rai, P., Tiwary, A. K., Singh, R. S., Kennedy, J. F., & Knill, C. J. (2011). Modified gums: Approaches and applications in drug delivery. Carbohydrate Polymers, 83(3), 1031–1047.

    Article  CAS  Google Scholar 

  • Samui, S., Ghosh, A. K., Ali, M. A., & Chowdhury, P. (2007). Synthesis, characterization and kinetic studies of PEMA grafted acacia gum. Indian Journal of Chemical Technology, 14(2), 126.

    CAS  Google Scholar 

  • Sharma, V., & Pathak, K. (2013). Modified xanthan gum as hydrophilic disintegrating excipient for rapidly disintegrating tablets of roxithromycin. Indian Journal of Pharmaceutical Education and Research, 47(4), 79–87.

    Article  Google Scholar 

  • Singh, V., Tiwari, S., Sharma, A. K., & Sanghi, R. (2007). Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly (methylmethacrylate). Journal of Colloid and Interface Science, 316(2), 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K. N., Queenan, K., Thomas, W., Fulcher, G., & Slavin, J. (2004). Cholesterol-lowering effect of barley beta-glucan in hypercholesterolemic subjects. FASEB Journal, 18, 149–152.

    CAS  Google Scholar 

  • Sotanaphun, U., Chaidedgumjorn, A., Kitcharoen, N., Satiraphan, M., Asavapichayont, P., & Sriamornsak, P. (2012). Preparation of pectin from fruit peel of Citrus maxima. Science, Engineering and Health Studies, 6(1), 42–48.

    CAS  Google Scholar 

  • Talukder, S. (2015). Effect of dietary fiber on properties and acceptance of meat products: A review. Critical Reviews in Food Science and Nutrition, 55(7), 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Thimma, R. T., & Tammishetti, S. (2001). Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery. Journal of Applied Polymer Science, 82(12), 3084–3090.

    Article  CAS  Google Scholar 

  • Wang, A., & Wang, W. (2013). Gum-g-copolymers: Synthesis, properties, and applications. In Polysaccharide based graft copolymers (pp. 149–203). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Wisker, E., Daniel, M., Rave, G., & Feldeim, W. (2000). Short chain fatty acids produced in vitro from fiber residues obtained from mixed diets containing different breads and in human feces during ingestion of diets. British Journal of Nutrition, 84, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. L., Kim, Y. H., Lee, H. S., Lee, M. S., & Moon, Y. K. (2003). Barley beta-glucan lowers serum cholesterol based on the up-regulation of cholesterol 7-alpha-hydroxylase activity and mRNA abundance in cholesterol fed rats. Journal of Nutritional Science and Vitaminology, 49, 381–387.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20(1), 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, C., & Ma, H. (2006). Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis). Journal of Agricultural and Food Chemistry, 54(6), 2223–2228.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, F. M., Du, B., Bian, Z. X., & Xu, B. J. (2015). Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. Journal of Food Composition and Analysis, 41, 165–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatur, P., Shah, U., Gani, A., Ahmad, M., Gani, A., Khan, Z. (2021). Dietary Gums. In: Gani, A., Ashwar, B.A. (eds) Food biopolymers: Structural, functional and nutraceutical properties. Springer, Cham. https://doi.org/10.1007/978-3-030-27061-2_8

Download citation

Publish with us

Policies and ethics