Skip to main content

pzqd: PEZY-SC2 Acceleration of Double-Double Precision Arithmetic Library for High-Precision BLAS

  • Conference paper
  • First Online:
Computational and Experimental Simulations in Engineering (ICCES 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 75))

Abstract

We implemented pzqd, a high precision arithmetic library for the PEZY-SC2 that is based on Hida et al.’s QD library. PEZY-SC2 is an MIMD (multiple instruction stream, multiple data stream) -type many-core processor. We optimized matrix-matrix multiplication (Rgemm) in double-double precision (DD) on the PEZY-SC2. Porting the CPU code to PEZY-SC2 code is relatively easy because PEZY-SC2 is a MIMD-type processor; it runs all the threads independently. As a proof of concept, we ported pzqd with minimal modifications to the original QD library; pzqd can treat a DD type variable in a unified way on the host CPU and the PEZY-SC2. The performance of our implementation of Rgemm in DD (DD-Rgemm) on the PEZY-SC2 attained 75% of the peak performance of DD, which is 20 times faster than an Intel Xeon E5-2618L v3, even including the communication time between the host CPU and the PEZY-SC2. The most important technique for optimizing the DD-Rgemm on the PEZY-SC2 is to make use of the high-speed scratch-pad memory (local memory) installed in each core. We stored the \(2\times 2\) DD block matrices and other temporary variables in local memory by reducing the number of threads to increase the local memory size per thread as they occupy local memory even for this block size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE: IEEE standard for floating-point arithmetic, IEEE Std 754-2008, 1–70 (2008). https://doi.org/10.1109/IEEESTD.2008.4610935

  2. Bailey, D.H.: High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7, 54–61 (2005). https://doi.org/10.1109/MCSE.2005.52

    Article  Google Scholar 

  3. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010). https://doi.org/10.1017/S096249291000005X

    Article  MathSciNet  MATH  Google Scholar 

  4. Demmel, J., Nguyen, H.D.: Numerical reproducibility and accuracy at ExaScale. In: IEEE 21st Symposium on Computer Arithmetic, Austin, TX, 2013, pp. 235–237 (2013). https://doi.org/10.1109/ARITH.2013.43

  5. Hida, Y., Li, X.S., Baily, D.H.: Library for Double-Double and Quad-Double Arithmetic. http://crd-legacy.lbl.gov/~dhbailey/mpdist/ and reference therein

  6. Nakata, M.: Numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. In: 2010 IEEE International Symposium on Computer-Aided Control System Design. IEEE Press, New York (2010). https://doi.org/10.1109/CACSD.2010.5612693

  7. Mukunoki, D., Takahashi, D.: Implementation and evaluation of quadruple precision BLAS functions on GPUs. In: PARA 2010: Applied Parallel and Scientific Computing. LNCS, vol. 7133, pp. 249–259. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28151-8_25

    Chapter  Google Scholar 

  8. Hishinuma, T., Tanaka, T., Hasegawa, H.: SIMD parallel sparse matrix-vector and transposed-matrix-vector multiplication in DD precision. In: VECPAR2016: 12th International Meeting on High Performance Computing for Computational Science. LNCS, vol. 10150, pp. 21–34. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-61982-8_4

    Chapter  Google Scholar 

  9. PEZY Computing: PEZY-SC2 module & processor. https://www.pezy.co.jp/products/pezy-sc2module-processor/ (in Japanese)

  10. Torii, S., Ishikawa, H., Kimura, Y., Saitoh, M.: Technologies and future prospects of green supercomputer ZettaScaler. IEICE Trans. C J100-C, 537–544 (2017) (in Japanese)

    Google Scholar 

  11. Green500. https://www.top500.org/green500/

  12. Tanaka, H., Ishihara, Y., Sakamoto, R., Nakamura, T., Kimura Y., Nitadori, K., Tsubouchi, M., Makino, J.: Automatic generation of high-order finite-difference code with temporal blocking for extreme-scale many-core systems. In: ESPM2 2018: Fourth International Workshop on Extreme Scale Programming Models and Middleware, Dallas, pp. 1–8 (2018)

    Google Scholar 

  13. Hishinuma, T., Kurosawa, N.: Development and Evaluation of OpenFOAM for PEZY-SC series toward to PEZY-SC3. In: OpenCAE Symposium 2018, Tokyo, no. A25, pp. 1–6 (in Japanese)

    Google Scholar 

  14. Lichtenau, C., Carlough, S., Mueller, S.M.: Quad precision floating point on the IBM z13. In: 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH). IEEE Press, New York (2016). https://doi.org/10.1109/ARITH.2016.26

  15. Patterson, D., Waterman, A.: The RISC-V Reader: An Open Architecture Atlas, 1 edn. Strawberry Canyon, pp. 1–200 (2017). ISBN: 0999249118

    Google Scholar 

  16. 128-bit long double floating-point data type. https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.genprogc/128bit_long_double_floating-point_datatype.htm

  17. IBM XL Fortran for AIX, V16.1.0, Language Reference. https://www.ibm.com/support/knowledgecenter/SSGH4D_16.1.0/com.ibm.compilers.aix.doc/langref.pdf?view=kc

  18. IBM XL Fortran for Linux, V16.1.1, Language Reference. https://www.ibm.com/support/knowledgecenter/SSAT4T_16.1.1/com.ibm.compilers.linux.doc/langref.pdf?view=kc

  19. Libm source. https://opensource.apple.com/source/Libm/Libm-315/Source/PowerPC/

  20. Aoyama, T., Hayakawa, M., Kinoshita, T., Nio, M.: Tenth-order electron anomalous magnetic moment: contribution of diagrams without closed lepton loops. Phys. Rev. D 91, 033006 (2015). https://doi.org/10.1103/PhysRevD.91.033006

    Article  Google Scholar 

  21. Mukunoki, D., Takahashi, D.: Using quadruple precision arithmetic to accelerate Krylov subspace methods on GPUs. In: PPAM2013: Proceedings of the 10th International Conference on Parallel Processing and Applied Mathematics. LNCS, vol. 8384, pp. 632–642. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_59

    Chapter  Google Scholar 

  22. Mukunoki, D., Takahashi, D.: Implementation and evaluation of triple and quadruple precision floating-point operations on GPUs. IPSJ Trans. Adv. Comput. Syst. (ACS) 6, 66–77 (2013) (in Japanese)

    Google Scholar 

  23. Nakata, M.: The MPACK; Multiple precision arithmetic BLAS (MBLAS) and LAPACK (MLAPACK). http://mplapack.sourceforge.net/

  24. Nakata, M., Takao, Y., Noda, S., Himeno, R.: A fast implementation of matrix-matrix product in double-double precision on NVIDIA C2050 and its application to semidefinite programming, In: 2012 Third International Conference on Networking and Computing, pp. 68-75. IEEE Press, New York (2012). https://doi.org/10.1109/ICNC.2012.19

  25. Joldes, M., Muller, JM., Popescu, V., Tucker, W.: CAMPARY: Cuda multiple precision arithmetic library and applications. In: ICMS 2016: Mathematical Software. LNCS, vol. 9725, pp. 232–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_29

    Chapter  Google Scholar 

  26. Joldes, M., Muller, JM., Popescu, V.: Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming. In: IEEE 24th Symposium on Computer Arithmetic (ARITH), London, pp. 27–34 (2017). https://doi.org/10.1109/ARITH.2017.18

  27. Kotakemori, H., Fujii, A., Hasegawa, H., Nishida, A.: Implementation of fast quad precision operation and acceleration with SSE2 for iterative solver library. IPSJ Trans. Adv. Comput. Syst. (ACS) 1, 73–84 (2008) (in Japanese)

    Google Scholar 

  28. Hishinuma, T., Fujii, A., Tanaka, T., Hasegawa, H.: AVX acceleration of DD arithmetic between a sparse matrix and vector. In: PPAM 2013: The Tenth International Conference on Parallel Processing and Applied Mathematics. LNCS, vol. 8384, pp. 622–631. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_58

    Chapter  Google Scholar 

  29. DD-AVX Library. https://sourceforge.net/projects/dd-avx/

  30. Kongetira, P., Aingaran, K., Olukotun, K.: Niagara: a 32-way multithreaded SPARC processor. IEEE Micro 25, 21–29 (2005). https://doi.org/10.1109/MM.2005.35

    Article  Google Scholar 

  31. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edn. Addison-Wesley Longman Publishing, Boston (1997)

    Google Scholar 

  32. Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971)

    Article  MathSciNet  Google Scholar 

  33. Kågström, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-performance model implementations and performance evaluation benchmark. ACM Trans. Math. Softw. 24, 268–302 (1998). https://doi.org/10.1145/292395.292412

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We used the Shoubu System B installed at RIKEN in collaboration with RIKEN, PEZY Computing, and ExaScaler Inc. A subsidy supporting this research for advanced use of high-performance general-purpose computers was provided by the Ministry of Education, Culture, Sports, Science, and Technology. A Grant-in-Aid for Scientific Research (B) (KAKENHI: 18H03206) also supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Hishinuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hishinuma, T., Nakata, M. (2020). pzqd: PEZY-SC2 Acceleration of Double-Double Precision Arithmetic Library for High-Precision BLAS. In: Okada, H., Atluri, S. (eds) Computational and Experimental Simulations in Engineering. ICCES 2019. Mechanisms and Machine Science, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-27053-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27053-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27052-0

  • Online ISBN: 978-3-030-27053-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics