Skip to main content

Basics of Geochemistry and Mineralogy of Chromium

  • Chapter
  • First Online:
Geochemistry of Chromium in the Earth’s Mantle

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The most important chromium-bearing phases in the Earth’s upper mantle are chrome spinel, Cr-bearing pyroxene, and Knr-garnet, which are replaced with Knr-Maj garnet, MgCr2O4 with the calcium titanate-type structure, and (Mg,Fe)2SiO4 wadsleyite/ringwoodite. Ferropericlase (Mg,Fe)O and (Mg,Fe)SiO3 bridgmanite may be considered as the host phases for chromium under the lower mantle conditions. Below we review the information about the high-pressure chromium-bearing phases in the Earth's mantle. Since chromite (Fe,Mg)(Cr,Al)2O4 containing up to ~55 wt% Cr2O3 is the major ore mineral of chromium and is an accessory phase in many ultramafic rocks, the largest chromite deposits and the models of their formation are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle, vol 421 (Special papers). Geological Society of America pp 1–13

    Google Scholar 

  • Akaogi M, Akimoto A (1977) Pyroxene-garnet solid-solution equilibria in the system Mg4Si4O12-Mg3Al2Si2O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 111:90–106

    Article  Google Scholar 

  • Akaogi M, Akimoto A (1979) High pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51

    Article  Google Scholar 

  • Alekseev YV (1987) Heavy metals in soils and plants. Agropromizdat, Leningrad, p 95. [in Russian]

    Google Scholar 

  • Alifirova TA, Pokhilenko LN, Ovchinnikov YI, Donnelly CL, Riches AJV, Taylor LA (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. Int Geol Rev 54(9):1071–1092

    Article  Google Scholar 

  • Andrault D (2007) Properties of lower-mantle Al-(Mg, Fe)SiO3 perovskite, vol 421 (Special papers). Geological Society of America, pp 15–36

    Google Scholar 

  • Arai S (1997) Origin of podiform chromitites. J Asian Earth Sci 15:303–310

    Article  Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle–melt interaction products. Econ Geol 89:1279–1288

    Article  Google Scholar 

  • Arai S (2013) Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 379:81–87

    Article  Google Scholar 

  • Augé T (1987) Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Miner Deposita 22(1):1–10

    Article  Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208(1):61–88

    Article  Google Scholar 

  • Badyukov DD (1985) High-pressure phases in impactites of the Zhamanshin crater (USSR)/XVI. In: Lunar and planetary science conference, Houston abstracts, pp 21–22

    Google Scholar 

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib Mineral Petrol 126:1–24

    Article  Google Scholar 

  • Bindi L, Griffin WL, Panero WR, Sirotkina EA, Bobrov AV, Irifune T (2018) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep 8:5457

    Article  Google Scholar 

  • Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014a) Chromium solubility in MgSiO3 ilmenite at high pressure. Phys Chem Miner 41:519–526

    Article  Google Scholar 

  • Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014b) Chromium solubility in perovskite at high pressure: the structure of (Mg1–xCrx)(Si1–xCrx)O3 (with x = 0.07) synthesized at 23 GPa and 1600 °C. Am Mineral 99:866–869

    Article  Google Scholar 

  • Bindi L, Sirotkina EA, Bobrov AV, Irifune T (2014c) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641

    Article  Google Scholar 

  • Binns RA (1970) (Mg, Fe)2SiO4 spinel in a meteorite. Phys Earth Planet Inter 3:156–160

    Article  Google Scholar 

  • Bobrov AV, Sirotkina EA, Garanin VK, Bovkun AV, Korost DV, Shkurskii BB (2012) Majoritic garnets with exsolution textures from the Mir Kimberlitic Pipe (Yakutia). Dokl Earth Sci 444(1):574–578

    Article  Google Scholar 

  • Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Béjina F, Abily B, Bindeman IN, Polvé M, De Parseval P, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53(12):2411–2440

    Article  Google Scholar 

  • Brey G, Wanke H (1983) Partitioning of cr, mn, V and NI between fe melt, magnesiowuestite and olivine at high pressures and temperatures, vol 14. In: Lunar and planetary science conference, pp 71–72

    Google Scholar 

  • Bulanova GP, Barashkov YP, Tal’nikova SB, Smelova GB (1993) Natural diamond: genetic aspects. Nauka, Novosibirsk, p 168. [in Russian]

    Google Scholar 

  • Bulatov V, Brey GP, Foley SF (1991) Origin of low-Ca, high-Cr garnets by recrystallization of low-pressure harzburgites, vol 5. In: International kimberlite conference: extended abstracts, pp 29–31

    Google Scholar 

  • Bunch TE, Fuchs LH (1969) A new mineral: brezinaite, Cr3S4, and the Tucson meteorite. Amer Mineral 54:1509–1518

    Google Scholar 

  • Bunch TE, Keil K (1971) Chromite and ilmenite in non-chondritic meteorites. Am Mineral 56:146–157

    Google Scholar 

  • Bunch TE, Keil K, Snetsinger KG (1967) Chromite composition in relation to chemistry and testure of ordinary chondrites. Geochim Cosmochim Acta 31:1569–1582

    Article  Google Scholar 

  • Bunch TE, Olsen E (1975) Distribution and significance of chromium in meteorites. Geochim Cosmochim Acta 39(6–7)

    Article  Google Scholar 

  • Burns RG (1975) On the occurrence and stability of divalent chromium in olivines included in diamonds. Contrib Mineral Petrol 51(3):213–221

    Article  Google Scholar 

  • Canil D, Wei K (1992) Constraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109(4):421–430

    Article  Google Scholar 

  • Chen M, Shu J, Mao HK (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chin Sci Bull 53(21):3341–3345

    Article  Google Scholar 

  • Chen M, Shu J, Xie X, Mao H (2003) Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942

    Article  Google Scholar 

  • Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamond from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume. Lithos 77:99–111

    Article  Google Scholar 

  • Deines P, Harris JW (2004) New insights into the occurrence of 13 C-depleted carbon in the mantle from two closely associated kimberlites: Letlhakane and Orapa, Botswana. Lithos 77:1–4

    Article  Google Scholar 

  • Diaz-Martinez E, Sanz-Rubio E, Fernandez C, Martinez-Frias J (2001) Evidence for a small meteorite impact in Extremadura (W. Spain). In: Proceedings of the 6th European science foundation, impact workshop on impact markers in the stratigraphic record, Granada, Spain, pp 21–22

    Google Scholar 

  • Dick HJB, Bullen TB (1984) Chromian spine1 as a petrogenetic indicator in abyssal and alpine-type peridotites. In: Komprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships, pp 295–308

    Google Scholar 

  • Distler VV, Kryachko VV, Yudovskaya MA (2008) Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineral Petrol 92(1–2):31–58

    Article  Google Scholar 

  • Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845

    Article  Google Scholar 

  • Donath IM (1962) Die Metullischen Rohstoffe. Band 14: Chrom, p 2. Ferdinand Enke, p 371

    Google Scholar 

  • Dreibus G, Wanke H (1979) On the chemical composition of the Moon and the eucrite parent body and a comparison with the composition of the Earth; the case of Mn, Cr, and V, vol 10. In: Lunar and planetary science conference, pp 315–317

    Google Scholar 

  • Fanfani L, Zanazzi PF (1967) Structural similarities of some secondary lead minerals. Miner Mag 36:522–529

    Google Scholar 

  • Fanfani L, Zanazzi PF (1968) The crystal structure of vauquelinite and the relationships to fornacite. Zeits Krist 126:433–443

    Article  Google Scholar 

  • Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109

    Google Scholar 

  • Frondel C, Klein C (1965) Ureyite, NaCrSi2O6: a new meteorite pyroxene. Science 149:742–744

    Article  Google Scholar 

  • Garanin VK, Kudryavtseva GP, Marfunin AS, Mikhailichenko OA (1991) Inclusions in diamond and diamondiferous rocks. Izd Mos Universiteta, Moscow, p 240. [in Russian]

    Google Scholar 

  • Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95:15751–15769

    Article  Google Scholar 

  • Gasparik T (2002) Experimental investigations of the origin majoritic garnet inclusions in diamonds. Phys Chem Miner 29:170–180

    Article  Google Scholar 

  • Glazovskaya LI, Trubkin NV (2005) Ringwoodite in pumice of the El Gasco region (Extremadura, Western Spain). Dokl Earth Sci 405A(9):1317–1320

    Google Scholar 

  • Gonzalez-Jimenez JM, Griffin WL, Proenza JA, Gervilla F, O’Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos 189:140–158

    Article  Google Scholar 

  • Gregoire M, Bell DR, Le Roex AP (2006) Garnet lherzolithes from the Kaapraval Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JH, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M, O’Reilly SY (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):655–684

    Article  Google Scholar 

  • Griffin WL, Sobolev NV, Ryan CG, Pokhilenko NP, Win TT, Yefimova ES (1993) Trace elements in garnets and chromites: diamond formation in the Siberian lithosphere. Lithosphere 29:235–256

    Google Scholar 

  • Grütter H, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820

    Article  Google Scholar 

  • Haggerty SE (1978) The redox state of planetary basalts. Geophys Res Lett 5(6):443–446

    Article  Google Scholar 

  • Haggerty SE, Boyd FR, Bell PM, Finger LW, Bryan WB (1970) Opaque minerals and olivine in lavas and breccias from Mare Tranquillitatis. Geochimica et Cosmoc Acta Supplement 1:513

    Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248:993–996

    Article  Google Scholar 

  • Hanson B, Jones JH (1998) The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. Am Mineral 83:669–684

    Article  Google Scholar 

  • Harte B, Cayzer N (2007) Decompression and unimixing of crystals include in diamonds. Phys Chem Miner 34:647–656

    Article  Google Scholar 

  • Harte B, Harris JW (1994) Lower mantle mineral association preserved in diamonds. Miner Mag 58A:384–385

    Article  Google Scholar 

  • Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd (The Geochemical Society, Houston) 6:125–153

    Google Scholar 

  • Hartmann G, Wedepohl KH (1993) The composition of peridotite tectonites from the Ivrea complex, northern Italy: residues from melt extraction. Geochim Cosmochim Acta 57:1761–1782

    Article  Google Scholar 

  • Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149(4):430–445

    Article  Google Scholar 

  • Hörkner W, Hk Müller-Buschbaum (1976) Einkristalluntersuchungen von β-CaCr2O4. Zeitschrift für Naturforschung, Teil B, Anorganische Chemie Organische Chemie 31:1710–1711

    Google Scholar 

  • Hutchison MT, Hurtshouse MB, Light ME (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib Mineral Petrol 142(2):119–126

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the Lithospheric Mantle in the Siberian Craton: new constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J Petrol 51:2177–2210

    Article  Google Scholar 

  • Irifune T (1987) An experimental investigation of the pyroxene–garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336

    Article  Google Scholar 

  • Irvine TN (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Ito E, Navrotsky A (1985) MgSiO3 ilmenite: calorimetry, phase equilibria, and decomposition at atmospheric pressure. Am Mineral 70:1020–1026

    Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res 94(B8):10637–10646

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wanke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of the 10th lunar planet science conference, Lunar and Planetary Science Institute, Houston, pp 2031–2050

    Google Scholar 

  • Jones RH (1990) Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3. 0): origin by closed-system fractional crystallization, with evidence for supercooling. Geochim Cosmochim Acta 54(6):1785–1802

    Article  Google Scholar 

  • Jones RH, Scott ERD (1989) Petrology and thermal history of type IA chondrules in the Semarkona (LL3. 0) chondrite, vol 19. In: Lunar and planetary science conference proceedings, pp 523–536

    Google Scholar 

  • Joswig W, Stachel T, Harris JW, Baur WH, Brey G (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth Planet Sci Lett 173:1–6

    Article  Google Scholar 

  • Kaminsky FV, Khachatryan GK, Andreazza P, Araujo D, Griffin WL (2009) Superdeep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 112S(2):833–842

    Article  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber AA (2015) Microinclusion of lower-mantle rock and other minerals and nitrogen lower-mantle inclusions in a diamond. Canad Mineral 53:83–104

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753

    Article  Google Scholar 

  • Keil K (1968) Mineralogical and chemical relationships among enstatite chondrites. J Geophys Res 73(22):6945–6976

    Article  Google Scholar 

  • Kesson SE, Gerald JDF (1992) Partitioning of MgO, FeO, NiO, MnO and Cr2O3 betweem magnesian silicate perovskite and magnesiowustite implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth Planet Sci Lett 111:229–240

    Article  Google Scholar 

  • Kesson SE, Ringwood AE (1989) Slab-mantle interactions: 1. Sheared and refertilised garnet peridotite xenoliths—samples of Wadati-Benioff zones? Chemical Geol 78(2):83–96

    Google Scholar 

  • Kimura M, Chen M, Yoshida Y, El Goresy A, Ohtani E (2004) Backtransformation of high-pressure phases in a shock melt vein of an Hchondrite during atmospheric passage: implications for the survival of high-pressure phases after decompression. Earth Planet Sci Lett 217:141–150

    Article  Google Scholar 

  • Kouvo O, Vuorelainen Y (1958) Eskolaite, a new chromium mineral. Am Mineral 43:1098–1106

    Google Scholar 

  • Kushiro I (1969) The system forsterite–diopside–silica with and without water at the high pressures. Am J Sci 267A:269–294

    Google Scholar 

  • Lazko EE (1979) Accessory minerals of diamond and the genesis of kimberlite rocks. Nedra, Moscow, p 192. [in Russian]

    Google Scholar 

  • Leblanc M, Nicolas A (1992) Ophiolitic chromitites. Int Geol Rev 34(7):653–686

    Article  Google Scholar 

  • Leshin LA, Rubin AE, McKeegan KD (1997) The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim Cosmochim Acta 61(4):835–845

    Article  Google Scholar 

  • Liang F, Yang J, Xu Z, Zhao J (2014) Moissanite and chromium-rich olivine in the Luobusa mantle peridotite and chromitite, Tibet: deep mantle origin implication. J Himalayan Earth Sci (Special Volume) 103

    Google Scholar 

  • Liu L (1975) Post-oxide phases of forsterite and enstatite. Geophys Res Lett 2:417–419

    Article  Google Scholar 

  • Liu L (1976) Orthorhombic perovskite phases observed in olivine, pyroxene and garnet at high pressures and temperatures. Phys Earth Planet Inter 11:289–298

    Article  Google Scholar 

  • Logvinova A, Wirth R, Sobolev NV, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2008) Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia. Am Mineral 93:685–690

    Article  Google Scholar 

  • Lorand JP, Ceuleneer G (1989) Silicate and base-metal sulfide inclusion in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): a model for entrapment. Lithos 22:173–190

    Article  Google Scholar 

  • Lozanovskaya JH, Orlov DS, Sadovnikova LK (1998) Ecology and biosphere protection under chemical pollution. Vysshaya Shkola, Moscow, p 287. [in Russian]

    Google Scholar 

  • Matsyuk SS, Platonov AN, Khomenko VM (1985) Optical spectra and colors of mantle minerals from kimberlites. Kiev, Nukova Dumka. [in Russian]

    Google Scholar 

  • McCoy TJ, Scott ERD, Jones RH, Keil K, Taylor GJ (1991) Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism. Geochim Cosmochim Acta 55:601–619

    Article  Google Scholar 

  • McKenna NM, Gurney JJ, Klump J, Davidson JM (2004) Aspects of diamond mineralisation and distribution at the Helam Mine, South Africa. Lithos 77:193–208

    Article  Google Scholar 

  • Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineral Depos 34(3):250–272

    Article  Google Scholar 

  • Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT, Canada: major element compositions and implications for the lithosphere beneath the central slave craton. Lithos 77(1):395–412

    Article  Google Scholar 

  • Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester pp 501–522

    Google Scholar 

  • Meyer HOA, Boyd FR (1972) Composition and origin of crystalline inclusions in natural diamonds. Geochim Cosmochim Acta 59:110–119

    Google Scholar 

  • Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555

    Article  Google Scholar 

  • Moore RO, Otter ML, Rickard RS, Harris JW, Gurney JJ (1986) The occurrence of moissanite and ferro-periclase as inclusions in diamond, vol 16. In: 4th international kimberlite conference extended abstracts. Perth. Geological society of Australia abstract, pp 409–411

    Google Scholar 

  • Nikitina LP (1993) The consistent system of thermometers and barometers for the basic and ultrabasic rocks and reconstruction of thermal conditions in the mantle based on Xenolites in Kimberlites. Zapiski Vseross Mineral Obshchestva 122(5):6–19

    Google Scholar 

  • Nixon PH, Hornung G (1968) A new chromium garnet end member, knorringite from kimberlite. Am Mineral 53:1833–1840

    Google Scholar 

  • Noller JS, Carter B (1986) The origin of various types of chromite schlieren in the Trinity Peridotite, Klamath Mountains, California. In: Carter B, Chowdhury MKR, Jankovic S, Marakushev AA, Morten L, Onikhimovsky VV, Raade G, Rocci G, Augustithis SS (eds) Metallogeny of basic and ultrabasic rocks (regional presentations) Theophrastus Athens, pp 151–178

    Google Scholar 

  • Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet Sci Lett 227:505–515

    Article  Google Scholar 

  • Olsen E, Fuchs L (1968) Krinovite, NaMg2CrSi3O10: a new meteorite mineral. Science 161:786–787

    Google Scholar 

  • Olsen E, Fuchs LH, Forbes WC (1973) Chromium and phosphorus enrichment in the metal of Type II (C2) carbonaceous chondrites. Geochim Cosmochim Acta 37:2037–2042

    Article  Google Scholar 

  • O’Neill HSC (1991) The origin of the moon and the early history of the earth—a chemical model. Part 1: the moon. Geochim Cosmochim Acta 55(4):1135–1157

    Article  Google Scholar 

  • Papike JJ (1998) Comparative planetary mineralogy: chemistry of melt-derived pyroxene, feldspar, and olivine, vol 29. In: Lunar and planetary science conference

    Google Scholar 

  • Papike JJ, Karner JM, Shearer CK (2004) Comparative planetary mineralogy: V/(Cr + Al) systematics in chromite as an indicator of relative oxygen fugacity. Am Mineral 89:1557–1560

    Article  Google Scholar 

  • Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B,  Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224

    Article  Google Scholar 

  • Perel’man AI (1989) Geochemistry. Vysshaya Shkola, Moscow, p 582. [in Russian]

    Google Scholar 

  • Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77:155–179

    Article  Google Scholar 

  • Pokhilenko NP, Sobolev NV, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope rations in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77:57–67

    Article  Google Scholar 

  • Prendergast MD, Wilson AH, Jones MJ (1989) The Great Dyke of Zimbabwe-II: mineralization and mineral deposits. In: Magmatic sulfides—the Zimbabwe volume. Institute of Mining and Metallurgy, London, pp 21–42

    Google Scholar 

  • Price GD, Putnis A, Agrell SO, Smith DGW (1983) Wadsleyite, natural β-(Mg, Fe)2SiO4 from the Peace River meteorite. Canad Mineral 21:29–35

    Google Scholar 

  • Promprated P, Taylor LA, Anand M, Floss C, Sobolev NV, Pokhilenko NP (2004) Multiple-mineral inclusions in diamonds from the Snap Lake/King Lake kimberlite dike, Slave craton, Canada: a trace-element perspective. Lithos 77(1):69–81

    Article  Google Scholar 

  • Pushcharovsky DYu, Pushcharovsky YuM (2012) The mineralogy and the origin of deep geospheres: a review. Earth Sci Rev 113:94–109

    Article  Google Scholar 

  • Rammensee W, Palme H, Wanke H (1983) Experimental investigation of metal-silicate partitioning of some lithophile elements (Ta, Mn, V, Cr). Lunar Planet Sci XIV:628–629

    Google Scholar 

  • Ridley J (2013) Ore deposit geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ringwood AE (1966) The chemical composition and origin of the earth. In: Hurley PM (ed) Advances in earth science. M.I.T. Press, Cambridge, pp 287–356

    Google Scholar 

  • Ringwood AE, Irifune T (1988) Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331:131–136

    Article  Google Scholar 

  • Ringwood AE, Major A (1966a) Synthesis of Mg2SiO4-Fe2SiO4 solid solutions. Earth Planet Sci Lett 1:241–245

    Article  Google Scholar 

  • Ringwood AE, Major A (1966b) Some high-pressure transformations in olivines and pyroxenes. J Geophys Res 71:4448–4449

    Article  Google Scholar 

  • Ringwood AE, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Int 89:3

    Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418

    Article  Google Scholar 

  • Robinson PT, Bai WJ, Malpas J, Yang JS, Zhou MF, Fang QS, Hu XF, Cameron S, Standigel H (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC (eds) Aspects of the tectonic evolution of China. Geological society of London, pp 247–271

    Google Scholar 

  • Ryabchikov ID, Green DH, Wall VJ, Brey GP (1981) The oxidation state of carbon in the reduced-velocity zone. Geochem Int 18:148–158

    Google Scholar 

  • Sato M (1976) Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism, vol 7. In: Lunar and planetary science conference proceedings, pp 1323–1344

    Google Scholar 

  • Sato M, Hickling NL, McLane JE (1973) Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas, vol 4. In: Lunar planetary science conference proceedings, p 1061

    Google Scholar 

  • Sautter V, Haggerty SE, Field S (1991) Ultradeep (>300 kilometers) ultramafic xenoliths: petrological evidence from the transition zone. Science 252:827–830

    Article  Google Scholar 

  • Sawamoto H (1987) Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: phase stability and properties of tetragonal garnet. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics, pp 209–219

    Chapter  Google Scholar 

  • Scambelluri M, Pettke T, van Roermund HLM (2008) Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. The geological society of America, Geology 36:59–62

    Google Scholar 

  • Scott Smith BH, Danchin RV, Harris JW, Stracke KJ (1984) Kimberlites near Orroroo, South Australia, vol 1. In: Kimberlites I: Kimberlites and Related Rocks. Elsevier, pp 121–142

    Google Scholar 

  • Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 32(5):751–767

    Article  Google Scholar 

  • Shannon RT, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25(5):925–946

    Article  Google Scholar 

  • Sharp TG, Lingemann CM, Dupas C, Stoffler D (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277:352–355

    Article  Google Scholar 

  • Sirotkina EA, Bindi L, Bobrov, AV, Aksenov SM, Irifune T (2018) Synthesis and crystal structure of chromium-bearing anhydrous wadsleyite. Phys Chem Miner, 1–6

    Google Scholar 

  • Snetsinger KG, Keil K, Buncii TE (1967) Chromite from ‘equilibrated’ chondrites. Am Mineral 52:1322–1331

    Google Scholar 

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. American Geophysical Union, Washington, DC, p 279

    Google Scholar 

  • Sobolev NV, Kaminsky FV, Griffin WL, Efimova ES, Win TT, Ryan CG, Botkunov AI (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39:135–157

    Article  Google Scholar 

  • Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contrib Mineral Petrol 40(1):39–52

    Article  Google Scholar 

  • Sobolev NV, Logvinova AM, Zedgenizov DA, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2004) Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77:225–242

    Article  Google Scholar 

  • Sobolev VS, Sobolev NV (1967) On chromium and chromium-bearing minerals in deep-seated xenoliths of kimberlite pipes. Geol Rudn Mestorozhd 2:10–16 [in Russian]

    Google Scholar 

  • Song S, Zhang L, Niu Y (2004) Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. Am Mineral 89:1330–1336

    Article  Google Scholar 

  • Spengler D, Van Roermund HL, Drury MR, Ottolini L, Mason PR, Davies GR (2006) Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440(7086):913–917

    Article  Google Scholar 

  • Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159(1–2):1–12

    Article  Google Scholar 

  • Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–892

    Article  Google Scholar 

  • Stachel T, Brey GP, Harris JW (2000a) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contib Mineral Petrol 140:1–15

    Article  Google Scholar 

  • Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia. Ghana Contrib Mineral Petrol 129(2–3):143–154

    Article  Google Scholar 

  • Stachel T, Harris JW, Aulbach S, Deines P (2002) Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contrib Mineral Petrol 142(4):465–475

    Article  Google Scholar 

  • Stachel T, Harris JW, Brey GP, Joswig W (2000b) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contib Mineral Petrol 140:16–27

    Article  Google Scholar 

  • Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71(2–4):489–503

    Article  Google Scholar 

  • Stowe CW (1994) Compositions and tectonic settings of chromite deposits through time. Econ Geol 89(3):528–546

    Article  Google Scholar 

  • Sutton SR, Jones KW, Gordon B, Rivers ML, Bajt S, Smith JV (1993) Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 57:461–468

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey G (2005) Mineral inclusions in diamonds from the Slave Province. Canada Eur J Miner 17(3):423–440

    Article  Google Scholar 

  • Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chem Erde 64:1–74

    Article  Google Scholar 

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science 277:1084–1086

    Article  Google Scholar 

  • Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Mineral 84:267–271

    Article  Google Scholar 

  • Van Roermund HLM, Drury MR, Barnhoorn A, De Ronde AA (2001) Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in Western Norway. J Petrol 42:117–130

    Article  Google Scholar 

  • Wang Z, O’Neill HSC, Lazor P, Saxena SK (2002) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061

    Article  Google Scholar 

  • Wänke H, Dreibus G, Palme H (1978) Primary matter in the lunar highlands—the case of the siderophile elements, vol 9. In: Lunar and planetary science conference proceedings, pp 83–110

    Google Scholar 

  • Weinbruch S, Armstrong J, Palme H (1994) Constraints on the thermal history of the Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochim Cosmochim Acta 58(2):1019–1030

    Article  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171. https://doi.org/10.1007/s00410-016-1255-7

  • Wilding MC (1990) A study of diamonds with syngenetic inclusions. Unpublished Ph.D. thesis, University of Edinburgh, UK, p 281

    Google Scholar 

  • Wilding MC, Harte B, Harris JW (1991) Evidence for a deep origin for the Sao Luiz diamonds. In: Fifth international kimberlite conference extended abstracts, Araxa, pp 456–458

    Google Scholar 

  • Xie Z, Sharp TG (2004) High-pressure phases in shock-induced melt veins of the Umbarger L6 chondrite: constraints of shock pressure. Meteorit Planet Sci 39:2043–2054

    Article  Google Scholar 

  • Yamamoto S, Komiya T, Hirose K, Maruyama S (2009) Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109:314–322

    Article  Google Scholar 

  • Yang J-S, Dobrzhinetskaya L, Bai W-J, Fang Q-S, Robinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite. Tibet Geol 35:875–878

    Article  Google Scholar 

  • Yusa H, Akaogi M, Ito E (1993) Calorimetric study of MgSiO3 garnet and pyroxene: heat capacities, transition enthalpies, and equilibrium phase relations in MgSiO3 at high pressures and temperatures. J Geophys Res 98:6453–6460

    Article  Google Scholar 

  • Zedgenizov DA, Shatsky VS, Panin AV, Evtushenko OV, Ragozin AL, Kagi H (2015) Evidence for phase transitions in mineral inclusions in superdeep diamonds of the São Luiz deposit (Brazil). Russ Geol Geophys 56(1–2):296–305

    Article  Google Scholar 

  • Zhang RY, Liou JG (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. Am Mineral 88:1591–1600

    Article  Google Scholar 

  • Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84(4):564–569

    Article  Google Scholar 

  • Zhou MF, Robinson PT (1994) High-Cr and high-Al podiform chromitites, Western China: relationship to partial melting and melt/rock reaction in the upper mantle. Int Geol Rev 36(7):678–686

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites from the Luobusa ophiolite (Southern Tibet): implications for melt/rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zou Y, Irifune T (2012) Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. J Miner Petrol Sci 107:197–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Matrosova .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matrosova, E.A., Bobrov, A.V., Bindi, L. (2020). Basics of Geochemistry and Mineralogy of Chromium. In: Geochemistry of Chromium in the Earth’s Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-27018-6_2

Download citation

Publish with us

Policies and ethics