Skip to main content

Predicting Bending Moments with Machine Learning

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Abstract

We investigate the possibility of predicting the bending moment of slender structures based on a limited number of deflection measurements. These predictions can help to estimate the wear and tear of the structures. We compare linear regression and a recurrent neural network on numerically simulated Euler–Bernoulli beam and drilling riser.

This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Authén, K.: Learning from riser analyses and predicting results with artificial neural networks. In: Volume 3B: Structures, Safety and Reliability. ASME, V03BT02A056, June 2017. https://doi.org/10.1115/OMAE2017-61775

  2. Burkov, A.: The Hundred-Page Machine Learning Book, Quebec (2019)

    Google Scholar 

  3. Chang, B.: et al.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  4. Chollet, F.: Deep Learning with Python, vol. 28, p. 384. Manning Publications, New York (2017)

    Google Scholar 

  5. Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Prob. 34(1), 014004 (2017). https://doi.org/10.1088/1361-6420/aa9a90

    Article  MathSciNet  MATH  Google Scholar 

  6. He, W., et al.: Dynamics and Control of Mechanical Systems in Off Shore Engineering. Springer-Verlag, London (2014). https://doi.org/10.1007/978-1-4471-5337-5

    Book  Google Scholar 

  7. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, K., et al.: Nonlinear dynamic analysis and fatigue damage assessment for a deepwater test string subjected to random loads. Petrol. Sci. 13(1), 126–134 (2016). https://doi.org/10.1007/s12182-015-0063-4

    Article  Google Scholar 

  9. Liu, X., et al.: Analysis on the operation fatigue of deepwater drilling riser system. Open Petrol. Eng. J. 9(1), 279–287 (2016). https://doi.org/10.2174/1874834101609010279

    Article  Google Scholar 

  10. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26(1), 163–243 (2019). https://doi.org/10.1007/s11831-017-9232-5

    Article  MathSciNet  Google Scholar 

  11. Morison, J.R., et al.: The force exerted by surface waves on piles. Petrol. Trans., AIME 189(4), 149–154 (1950)

    Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Raissi, M., et al.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019). https://doi.org/10.1017/jfm.2018.872

    Article  MathSciNet  MATH  Google Scholar 

  14. Sparks, C.: Fundamentals of Marine Riser Mechanics. PennWell Corporation, Tulsa (2007)

    Google Scholar 

  15. Vikebø, F., et al.: Wave height variations in the North Sea and on the Norwegian Continental Shelf, 1881–1999. Cont. Shelf Res. 23(3–4), 251–263 (2003). https://doi.org/10.1016/s0278-4343(02)00210-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Kopylov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celledoni, E., Gustad, H.S., Kopylov, N., Sundklakk, H.S. (2019). Predicting Bending Moments with Machine Learning. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics