Charache, S., et al.: Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N. Engl. J. Med. 332(20), 1317–1322 (1995)
CrossRef
Google Scholar
Khalaf, M., Hussain, A.J., Al-Jumeily, D., Fergus, P., Keenan, R., Radi, N.: A framework to support ubiquitous healthcare monitoring and diagnostic for sickle cell disease. In: Huang, D.-S., Jo, K.-H., Hussain, A. (eds.) ICIC 2015. LNCS, vol. 9226, pp. 665–675. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22186-1_66
CrossRef
Google Scholar
Zaidan, A., et al.: A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health Technol. 8(4), 223–238 (2018)
CrossRef
Google Scholar
Adams, H.: Medical Informatics: Computer Applications in Health Care. JAMA 265(4), 522 (1991)
CrossRef
Google Scholar
Khalaf, M., et al.: A data science methodology based on machine learning algorithms for flood severity prediction. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)
Google Scholar
Taiana, M., Nascimento, J., Bernardino, A.: On the purity of training and testing data for learning: the case of pedestrian detection. Neurocomputing 150, 214–226 (2015)
CrossRef
Google Scholar
Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: A survey of classification methods in data streams. In: Aggarwal, C.C. (ed.) data streams, vol. 31, pp. 39–59. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-47534-9_3
CrossRef
MATH
Google Scholar
Khalaf, M., et al.: A performance evaluation of systematic analysis for combining multi-class models for sickle cell disorder data sets. In: Huang, D.-S., Jo, K.-H., Figueroa-García, J.C. (eds.) ICIC 2017. LNCS, vol. 10362, pp. 115–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63312-1_10
CrossRef
Google Scholar
Holder, L.B., Russell, I., Markov, Z., Pipe, A.G., Carse, B.: Current and future trends in feature selection and extraction for classification problems. Int. J. Pattern Recogn. Artif. Intell. 19(02), 133–142 (2005)
CrossRef
Google Scholar
Khalaf, M., et al.: Recurrent neural network architectures for analysing biomedical data sets. In: 2017 10th International Conference on Developments in eSystems Engineering (DeSE), pp. 232–237. IEEE (2017)
Google Scholar
Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Comput. Commun. Rev. 36(5), 5–16 (2006)
CrossRef
Google Scholar
Akay, M.F.: Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36(2), 3240–3247 (2009)
CrossRef
Google Scholar
Liu, Y., Yu, X., Huang, J.X., An, A.: Combining integrated sampling with SVM ensembles for learning from imbalanced datasets. Inf. Process. Manage. 47(4), 617–631 (2011)
CrossRef
Google Scholar
Khalaf, M., et al.: training neural networks as experimental models: classifying biomedical datasets for sickle cell disease. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 784–795. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42291-6_78
CrossRef
Google Scholar
Subashini, T., Ramalingam, V., Palanivel, S.: Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst. Appl. 36(3), 5284–5290 (2009)
CrossRef
Google Scholar
Gil, D., Manuel, D.J.: Diagnosing Parkinson by using artificial neural networks and support vector machines. Global J. Comput. Sci. Technol. 9(4), 63–71 (2009)
Google Scholar
Dalvi, P.T., Vernekar, N.: Anemia detection using ensemble learning techniques and statistical models. In IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1747–1751. IEEE (2016)
Google Scholar
Tang, J., Zhang, X.: Prediction of smoothed monthly mean sunspot number based on chaos theory. Acta Phys. Sin. 61, 169601 (2012)
Google Scholar
Seliya, N., Khoshgoftaar, T.M., Van Hulse, J.: Aggregating performance metrics for classifier evaluation. In: IEEE International Conference on Information Reuse & Integration, IRI 2009,, pp. 35–40. IEEE (2009)
Google Scholar
Khalaf, M., et al.: Machine learning approaches to the application of disease modifying therapy for sickle cell using classification models. Neurocomputing 228, 154–164 (2017)
CrossRef
Google Scholar
Wei, Z.-S., Han, K., Yang, J.-Y., Shen, H.-B., Yu, D.-J.: Protein–protein interaction sites prediction by ensembling SVM and sample-weighted random forests. Neurocomputing 193, 201–212 (2016)
CrossRef
Google Scholar
Sánchez A, V.D.: Advanced support vector machines and kernel methods. Neurocomputing 55(1–2), 5–20 (2003)
CrossRef
Google Scholar
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
MATH
Google Scholar
Adankon, M.M., Cheriet, M.: Model selection for the LS-SVM. Application to handwriting recognition. Pattern Recogn. 42(12), 3264–3270 (2009)
CrossRef
Google Scholar
Gunn, S.R.: Support vector machines for classification and regression. ISIS technical report, vol. 14, no. 1, pp. 5–16 (1998)
Google Scholar
Khalaf, M., et al.: The utilisation of composite machine learning models for the classification of medical datasets for sickle cell disease. In: 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC), pp. 37–41. IEEE (2016)
Google Scholar
Hric, M., Chmulík, M., Jarina, R.: Model parameters selection for SVM classification using Particle Swarm Optimization. In: Radioelektronika (RADIOELEKTRONIKA), 2011 21st International Conference, 2011, pp. 1–4. IEEE (2011)
Google Scholar
Baker, T., Rana, O.F., Calinescu, R., Tolosana-Calasanz, R., Bañares, J.Á.: Towards autonomic cloud services engineering via intention workflow model. In: Altmann, J., Vanmechelen, K., Rana, Omer F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 212–227. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02414-1_16
CrossRef
Google Scholar