Skip to main content

Simulation of Complex Neural Firing Patterns Based on Improved Deterministic Chay Model

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1434 Accesses

Abstract

In this study, the deterministic Chay model is improved considering the K+ channel opening probability during the generation of the generation mechanism of action potential. It can not only simulate the periodic firing, chaos and periodic-adding bifurcation that the original Chay model can simulate, but also simulate the rhythm that the original model cannot simulate, which enhances the simulation ability of the model. The simulation results show that the unification of certainty and randomness in the deterministic system for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atencio, C.A., Sharpee, T.O., Schreiner, C.E.: Cooperative nonlinearities in auditory cortical neurons. Neuron 58(6), 956–966 (2008)

    Article  Google Scholar 

  2. Li, C.H., Yang, S.Y.: Eventual dissipativeness and synchronization of nonlinearly coupled dynamical network of Hindmarsh-Rose neurons. Appl. Math. Model. 39(21), 6631–6644 (2015)

    Article  MathSciNet  Google Scholar 

  3. Shi, R., Hu, G., Wang, S.: Reconstructing nonlinear networks subject to fast-varying noises by using linearization with expanded variables. Commun. Nonlinear Sci. Numer. Simul. 72, 407–416 (2019)

    Article  MathSciNet  Google Scholar 

  4. Yang, Y., Solis-Escalante, T., van der Helm, F., Schouten, A.: A generalized coherence framework for detecting and characterizing nonlinear interactions in the nervous system. IEEE Trans. Biomed. Eng. 25(4), 401–410 (2008)

    Google Scholar 

  5. Zhao, Z., Gu, H.: Identifying time delay-induced multiple synchronous behaviours in inhibitory coupled bursting neurons with nonlinear dynamics of single neuron. Proc. IUTAM 22, 160–167 (2017)

    Article  Google Scholar 

  6. Ren, W., Hu, S.J., Zhang, B.J., Wang, F.Z., Gong, Y.F., Xu, J.: Period-adding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker. Int. J. Bifurcat. Chaos. 7(08), 1867–1872 (1997)

    Article  Google Scholar 

  7. Yang, M., An, S., Gu, H., Liu, Z., Ren, W.: Understanding of physiological neural firing patterns through dynamical bifurcation machineries. NeuroReport 17(10), 995–999 (2006)

    Article  Google Scholar 

  8. Huang, S., Zhang, J., Wang, M., Hu, C.: Firing patterns transition and desynchronization induced by time delay in neural networks. Phys. A 499, 88–97 (2018)

    Article  MathSciNet  Google Scholar 

  9. Jia, B., Gu, H., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn. 11(2), 1–12 (2017)

    Article  Google Scholar 

  10. Jia, B., Gu, H.: Dynamics and physiological roles of stochastic firing patterns near bifurcation points. Int. J. Bifurcat. Chaos. 27(7), 1750113 (2017)

    Article  MathSciNet  Google Scholar 

  11. Evans-Martin, F.F.: The Nervous System. Infobase Publishing (2009)

    Google Scholar 

  12. Bao, B.C., Wu, P.Y., Bao, H., Xu, Q., Chen, M.: Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos. Soliton. Fract. 106, 161–170 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gu, H., Zhang, H., Wei, C., Yang, M., Liu, Z., Ren, W.: Coherence resonance–induced stochastic neural firing at a saddle-node bifurcation. Int. J. Mod. Phys. B 25(29), 3977–3986 (2011)

    Article  Google Scholar 

  14. Li, D., Hu, B., Wang, J., Jing, Y., Hou, F.: Coherence resonance in the two-dimensional neural map driven by non-Gaussian colored noise. Int. J. Mod. Phys. B 30(5), 1650012 (2016)

    Article  Google Scholar 

  15. Liu, J., Mao, J., Huang, B., Liu, P.: Chaos and reverse transitions in stochastic resonance. Phys. Lett. A 382(42), 3071–3078 (2018)

    Article  Google Scholar 

  16. Shaw, P.K., Chaubey, N., Mukherjee, S., Janaki, M.S., Iyengar, A.N.: A continuous transition from chaotic bursting to chaotic spiking in a glow discharge plasma and its associated long range correlation to anti correlation behaviour. Phys. A 513, 126–134 (2019)

    Article  Google Scholar 

  17. Zlatkovic, B.M., Samardzic, B.: Multiple spatial limit sets and chaos analysis in MIMO cascade nonlinear systems. Chaos. Soliton. Fract. 119, 86–93 (2019)

    Article  MathSciNet  Google Scholar 

  18. Shang, H., Xu, R., Wang, D.: Dynamic analysis and simulation for two different chaos-like stochastic neural firing patterns observed in real biological system. In: International Conference on Intelligent Computing, pp. 749–757 (2017)

    Chapter  Google Scholar 

  19. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Phys. D 16(2), 233–242 (1985)

    Article  Google Scholar 

  20. Shang, H., Jiang, Z., Xu, R., Wang, D., Wu, P., Chen, Y.: The dynamic mechanism of a novel stochastic neural firing pattern observed in a real biological system. Cogn. Syst. Res. 53, 123–136 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2018LF005), the National Key Research and Development Program of China (No. 2016YFC0106000), the Natural Science Foundation of China (Grant No. 61302128), the Youth Science and Technology Star Program of Jinan City (201406003), the Nature Science Research Fund of Jiangsu Province of China (No. BK20161165), and the applied fundamental research Foundation of Xuzhou of China (No. KC17072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z., Wang, D., Shang, H., Chen, Y. (2019). Simulation of Complex Neural Firing Patterns Based on Improved Deterministic Chay Model. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics