Dembélé, D., Kastner, P.: Fold change rank ordering statistics: a new method for detecting differentially expressed genes. BMC Bioinformatics 15, 14 (2014). https://doi.org/10.1186/1471-2105-15-14
CrossRef
Google Scholar
Shi, L., Tong, W., Fang, H., et al.: Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. BMC Bioinformatics 6(2), 1–14 (2005)
Google Scholar
Lockhart, D.J., Brown, E.L., Wong, G.G., et al.: Expression monitoring by hybridization to high density oligonucleotide arrays. Nat. Biotechnol. 14(13), 1675–1680 (1996)
CrossRef
Google Scholar
Mccarthy, D.J., Smyth, G.K.: Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25(6), 765–771 (2009)
CrossRef
Google Scholar
Tusher, V.G., Tibshirani, R., Chu, G., et al.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Nat. Acad. Sci. U.S.A. 98(9), 5116–5121 (2001)
CrossRef
Google Scholar
Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1), 1–28 (2004)
MathSciNet
CrossRef
Google Scholar
De Las Rivas, J., Fontanillo, C.: Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 6(6), e1000807 (2010). https://doi.org/10.1371/journal.pcbi.1000807
CrossRef
Google Scholar
Bebek, G.: Identifying gene interaction networks. Methods Mol. Biol. 850, 483–494 (2012). https://doi.org/10.1007/978-1-61779-555-8_26
CrossRef
Google Scholar
Silva, G.K., Costa, R.S., Silveira, T.N., Caetano, B.C., et al.: Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection. J. Immunol. 191(6), 3373–3383 (2013)
CrossRef
Google Scholar
Pepper, S.D., Saunders, E.K., Edwards, L.E., Wilson, C.L., Miller, C.J.: The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics 30(8), 273 (2007)
CrossRef
Google Scholar
Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)
CrossRef
Google Scholar
Hong, F., Breitling, R.: A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24(3), 374–382 (2008)
CrossRef
Google Scholar
Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)
CrossRef
Google Scholar
Zhang, Q.: A powerful nonparametric method for detecting differentially co-expressed genes: distance correlation screening and edge-count test. BMC Syst. Biol. 12(1), 58 (2018)
CrossRef
Google Scholar
Cai, H., et al.: VennPlex–a novel venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One 8, e53388 (2013)
CrossRef
Google Scholar
Farztdinov, V., Mcdyer, F.A.: Distributional fold change test – a statistical approach for detecting differential expression in microarray experiments. Algorithms Mol. Biol. 7(1), 29 (2012)
CrossRef
Google Scholar
Aouiche, C., Chen, B., Shang, X.: Predicting stage-specific cancer related genes and their dynamic modules by integrating multiple datasets. BMC Bioinformatics 20(S7), 194 (2019)
CrossRef
Google Scholar
Nepusz, T., Yu, H., Paccanaro, A., et al.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9(5), 471–472 (2012)
CrossRef
Google Scholar
Chen, B., Shang, X., Li, M., Wang, J., Wu, F.: Identifying individual-cancer-related genes by rebalancing the training samples. IEEE Trans. NanoBiosci. 15(4), 309–315 (2016)
CrossRef
Google Scholar
Shi, G., Wang, Y., Zhang, Ch.: Identification of genes involved in the four stages of colorectal cancer: gene expression profiling. Mol. Cell. Probes 37, 39–47 (2018)
CrossRef
Google Scholar