Skip to main content

Bayesian Networks for Max-Linear Models

  • Chapter
  • First Online:

Abstract

We study Bayesian networks based on max-linear structural equations as introduced in Gissibl and Klüppelberg (2018) and provide a summary of their independence properties. In particular, we emphasize that distributions for such networks are generally not faithful to the independence model determined by their associated directed acyclic graph. In addition, we consider some of the basic issues of estimation and discuss generalized maximum likelihood estimation of the coefficients, using the concept of a generalized likelihood ratio for non-dominated families as introduced by Kiefer and Wolfowitz (1956). Finally, we argue that the structure of a minimal network asymptotically can be identified completely from observational data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asadi, P., Davison, A. C. & Engelke, S. (2015), ‘Extremes on river networks’, Ann. Appl. Stat.9(4), 2023–2050. https://doi.org/10.1214/15-AOAS863

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., De Waal, D. & Ferro, C. (2006), Statistics of Extremes: Theory and Applications, Wiley, Chichester.

    MATH  Google Scholar 

  • Bollen, K. A. (1989), Structural Equations with Latent Variables, Wiley, New York.

    Book  Google Scholar 

  • Buhl, S., Davis, R. A., Klüppelberg, C. & Steinkohl, C. (2016), ‘Semiparametric estimation for isotropic max-stable space-time processes’, arXiv:1609.04967.

    Google Scholar 

  • Butkovič, P. (2010) , Max-linear Systems: Theory and Algorithms, Springer, London.

    Book  Google Scholar 

  • Davis, R. A., Klüppelberg, C. & Steinkohl, C. (2013), ‘Statistical inference for max-stable processes in space and time’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)75(5), 791–819.

    Google Scholar 

  • Davis, R. A. & Resnick, S. I. (1989) , ‘Basic properties and prediction of max-ARMA processes’, Advances in Applied Probability21(4), 781–803.

    Google Scholar 

  • Davison, A. C., Padoan, S. A. & Ribatet, M. (2012), ‘Statistical modeling of spatial extremes’, Statist. Sci.27(2), 161–186. https://doi.org/10.1214/11-STS376

  • Dawid, A. P. (1980), ‘Conditional independence for statistical operations’, The Annals of Statistics8(3), 598–617.

    Article  MathSciNet  Google Scholar 

  • de Haan, L. & Ferreira, A. (2006), Extreme Value Theory: An Introduction, Springer, New York.

    Book  Google Scholar 

  • Einmahl, J. H. J., Kiriliouk, A. & Segers, J. (2018), ‘A continuous updating weighted least squares estimator of tail dependence in high dimensions’, Extremes21(2), 205–233. https://doi.org/10.1007/s10687-017-0303-7

  • Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997), Modelling Extremal Events: for Insurance and Finance, Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  • Finkenstädt, B. & Rootzén, H. (2004), Extreme Values in Finance, Telecommunications, and the Environment, Chapman & Hall/CRC, Boca Raton.

    MATH  Google Scholar 

  • Frydenberg, M. (1990), ‘The chain graph Markov property’, Scandinavian Journal of Statistics17(4), 333–353.

    MathSciNet  MATH  Google Scholar 

  • Gill, R. D., Wellner, J. A. & Præstgaard, J. (1989) , ‘Non- and semi-parametric maximum likelihood estimators and the von Mises method (part 1)’, Scandinavian Journal of Statistics16(2), 97–128.

    MathSciNet  Google Scholar 

  • Gissibl, N. & Klüppelberg, C. (2018), ‘Max-linear models on directed acyclic graphs’, Bernoulli24(4A), 2693–2720. https://doi.org/10.3150/17-BEJ941

  • Gissibl, N., Klüppelberg, C. & Lauritzen, S. (2019), ‘Identifiability and estimation of recursive max-linear models’, arXiv:1901.03556

    Google Scholar 

  • Gissibl, N., Klüppelberg, C. & Mager, J. (2017), Big data: Progress in automating extreme risk analysis, in W. Pietsch, J. Wernecke & M. Ott, eds, ‘Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data’, Springer Fachmedien Wiesbaden, Wiesbaden, pp. 171–189.

    Chapter  Google Scholar 

  • Hoef, J. M. V., Peterson, E. E. & Theobald, D. (2006), ‘Spatial statistical models that use flow and stream distance’, Environmental and Ecological Statistics13(4), 449–464.

    Article  MathSciNet  Google Scholar 

  • Huser, R. & Davison, A. C. (2014), ‘Space-time modelling of extreme events’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)76(2), 439–461.

    Article  MathSciNet  Google Scholar 

  • Johansen, S. (1978) , ‘The product limit estimator as maximum likelihood estimator’, Scandinavian Journal of Statistics5(4), 195–199.

    MathSciNet  MATH  Google Scholar 

  • Kiefer, J. & Wolfowitz, J. (1956), ‘Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters’, The Annals of Mathematical Statistics27(4), 887–906.

    Article  MathSciNet  Google Scholar 

  • Lauritzen, S. & Sadeghi, K. (2018), ‘Unifying Markov properties for graphical models’, Ann. Statist.46(5), 2251–2278. https://doi.org/10.1214/17-AOS1618

  • Lauritzen, S. (1996), Graphical Models, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Lauritzen, S. L., Dawid, A. P., Larsen, B. N. & Leimer, H.-G. (1990), ‘Independence properties of directed Markov fields’, Networks20(5), 491–505.

    Article  MathSciNet  Google Scholar 

  • Meek, C. (1995), Strong completeness and faithfulness in Bayesian networks, in P. Besnard & S. Hanks, eds, ‘Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence’, Morgan Kaufmann Publishers, San Francisco, pp. 411–418.

    Google Scholar 

  • Peters, J. & Bühlmann, P. (2014), ‘Identifiability of Gaussian structural equation models with equal error variances’, Biometrika101(1), 219–228.

    Google Scholar 

  • Resnick, S. I. (1987), Extreme Values, Regular Variation, and Point Processes, Springer, New York.

    Book  Google Scholar 

  • Resnick, S. I. (2007), Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer, New York.

    MATH  Google Scholar 

  • Richardson, T. (2003), ‘Markov properties for acyclic directed mixed graphs’, Scandinavian Journal of Statistics30(1), 145–157.

    Article  MathSciNet  Google Scholar 

  • Scholz, F. W. (1980) , ‘Towards a unified definition of maximum likelihood’, The Canadian Journal of Statistics8(2), 193–203.

    Article  MathSciNet  Google Scholar 

  • Shimizu, S., Hoyer, P. O., Hyvärinen, A. & Kerminen, A. (2006) , ‘A linear non-Gaussian acyclic model for causal discovery’, J. Mach. Learn. Res.7, 2003–2030.

    MathSciNet  MATH  Google Scholar 

  • Spirtes, P., Glymour, C. & Scheines, R. (2000) , Causation, Prediction, and Search, 2nd edn, MIT press.

    Google Scholar 

  • Spirtes, P. & Zhang, J. (2014) , ‘A uniformly consistent estimator of causal effects under the \(k\)-triangle-faithfulness assumption’, Statist. Sci.29(4), 662–678. https://doi.org/10.1214/13-STS429

  • Verma, T. & Pearl, J. (1990), Equivalence and synthesis of causal models, in L. N. K. P. Bonissone, M. Henrion & J. F. Lemmer, eds, ‘Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence’, Amsterdam, pp. 255–270.

    Google Scholar 

  • Wang, Y. & Stoev, S. A. (2011), ‘Conditional sampling for spectrally discrete max-stable random fields’, Adv. in Appl. Probab.43(2), 461–483.

    Article  MathSciNet  Google Scholar 

  • West, D. (2001), Introduction to Graph Theory, Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

The authors have benefited from discussions with Nadine Gissibl and financial support from the Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Klüppelberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klüppelberg, C., Lauritzen, S. (2019). Bayesian Networks for Max-Linear Models. In: Biagini, F., Kauermann, G., Meyer-Brandis, T. (eds) Network Science. Springer, Cham. https://doi.org/10.1007/978-3-030-26814-5_6

Download citation

Publish with us

Policies and ethics