Skip to main content

CNT Sponges for Environmental Applications

  • Chapter
  • First Online:
Nanomaterials for Eco-friendly Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The synthesis of 3D architectures composed of carbon nanotubes (CNT) is one of the most exciting and challenging research domains in nanotechnology. These systems have great potential for supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. In this chapter, we present an overview of the CNT sponges, which are characterized by high hydrophobicity, high oil absorption capacity, high-performance in mechanical test and high porosity making it an attractive candidate for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNTs:

Carbon nanotubes

CVD:

Chemical Vapor Deposition

DWCNT:

Double Wall Carbon Nanotubes

MWCNT:

Multiple Wall Carbon Nanotubes

SEM:

Scanning Electron Microscopy

SWCNT:

Single Wall Carbon Nanotubes

S3DCNT:

Three-dimensional Structures of Carbon Nanotubes

TEM:

Transmission Electron Microscopy

References

  1. Salvetat J-P, Bonard J-M, Thomson NH (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260. https://doi.org/10.1007/s003390050999

    Article  CAS  Google Scholar 

  2. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43:61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  3. Zampiva RYS et al (2017) 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles—a study of surface area and spinel inversion influence. Appl Surf Sci 422:321–330. https://doi.org/10.1016/j.apsusc.2017.06.020

    Article  CAS  Google Scholar 

  4. Kong J et al (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292:567–574. https://doi.org/10.1016/S0009-2614(98)00745-3

    Article  CAS  Google Scholar 

  5. Richter H et al (1996) Formation of nanotubes in low pressure hydrocarbon flames. Carbon N Y 34:427–429. https://doi.org/10.1016/0008-6223(96)87612-3

    Article  CAS  Google Scholar 

  6. Ehbrecht M et al (1993) CO2-laser-driven production of carbon clusters and fullerenes from the gas phase. Chem Phys Lett 214:34–38. https://doi.org/10.1016/0009-2614(93)85451-S

    Article  CAS  Google Scholar 

  7. Biró LP et al (2003) Continuous carbon nanotube production in underwater AC electric arc. Chem Phys Lett 372:399–402. https://doi.org/10.1016/S0009-2614(03)00417-2

    Article  CAS  Google Scholar 

  8. Bai H et al (2015) Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep Purif Technol 156:922–930. https://doi.org/10.1016/j.seppur.2015.10.016

    Article  CAS  Google Scholar 

  9. Gui X et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621. https://doi.org/10.1002/adma.200902986

    Article  CAS  Google Scholar 

  10. Hashim DP et al (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:1–8. https://doi.org/10.1038/srep00363

    Article  CAS  Google Scholar 

  11. Ozden S et al (2015) 3D macroporous solids from chemically cross-linked carbon nanotubes. Small 11:688–693. https://doi.org/10.1002/smll.201402127

    Article  CAS  Google Scholar 

  12. Siddiqa A et al (2015) Silica decorated CNTs sponge for selective removal of toxic contaminants and oil spills from water. J Environ Chem Eng 3:892–897. https://doi.org/10.1016/j.jece.2015.02.026

    Article  CAS  Google Scholar 

  13. Muñoz-Sandoval E et al (2017) Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon N Y 115:409–421. https://doi.org/10.1016/j.carbon.2017.01.010

    Article  CAS  Google Scholar 

  14. Zampiva RYS et al (2017) 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles—a study of surface area and spinel inversion influence. Appl Surf Sci 422:321–330. https://doi.org/10.1016/j.apsusc.2017.06.020

    Article  CAS  Google Scholar 

  15. Gui X et al (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804. https://doi.org/10.1016/j.actamat.2011.04.022

    Article  CAS  Google Scholar 

  16. Iqbal N et al (2016) Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J Colloid Interface Sci 476:87–93. https://doi.org/10.1016/j.jcis.2016.05.010

    Article  CAS  Google Scholar 

  17. Fan X et al (2017) Synthesis of ordered mesoporous TiO2-Carbon-CNTs nanocomposite and its efficient photoelectrocatalytic methanol oxidation performance. Microporous Mesoporous Mater 240:1–8. https://doi.org/10.1016/j.micromeso.2016.10.049

    Article  CAS  Google Scholar 

  18. Serrano MC et al (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog Polym Sci 39:1448–1471. https://doi.org/10.1016/j.progpolymsci.2014.02.004

    Article  CAS  Google Scholar 

  19. Peng Y et al (2017) An optimized process for in situ formation of multi-walled carbon nanotubes in templated pores of polymer-derived silicon oxycarbide. Ceram Int 43:3854–3860. https://doi.org/10.1016/j.ceramint.2016.12.045

    Article  CAS  Google Scholar 

  20. Liu Q et al (2007) Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon N Y 45:268–273. https://doi.org/10.1016/j.carbon.2006.09.029

    Article  CAS  Google Scholar 

  21. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27. https://doi.org/10.1016/S1369-7021(06)71788-6

    Article  CAS  Google Scholar 

  22. Kroto HW et al (1985) C60: Buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 353:737–740. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  24. Jorio A et al (2008) Carbon nanotubes. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  25. Walker PL et al (1959) Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. Properties of carbon formed. J Phys Chem 63:133–140. https://doi.org/10.1021/j150572a002

    Article  CAS  Google Scholar 

  26. José-Yacamán M et al (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:202–204. https://doi.org/10.1063/1.109315

    Article  Google Scholar 

  27. Zhu J et al (2012) Synthesis of bamboo-like carbon nanotubes on a copper foil by catalytic chemical vapor deposition from ethanol. Carbon N Y 50:2504–2512. https://doi.org/10.1016/j.carbon.2012.01.073

    Article  CAS  Google Scholar 

  28. Liu L et al (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7:1504–1520. https://doi.org/10.1002/smll.201002198

    Article  CAS  Google Scholar 

  29. Lepró X et al (2010) Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon N Y 48:3621–3627. https://doi.org/10.1016/j.carbon.2010.06.016

    Article  CAS  Google Scholar 

  30. Kao E et al (2016) ALD titanium nitride on vertically aligned carbon nanotube forests for electrochemical supercapacitors. Sens Actuators A Phys 240:160–166. https://doi.org/10.1016/j.sna.2016.01.044

    Article  CAS  Google Scholar 

  31. Xiao Y et al (2016) Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J Mater Chem A 4:10379–10393. https://doi.org/10.1039/C6TA03832H

    Article  CAS  Google Scholar 

  32. Erbay C et al (2015) Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. J Power Sources 298:177–183. https://doi.org/10.1016/j.jpowsour.2015.08.021

    Article  CAS  Google Scholar 

  33. Yang G et al (2015) Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy Environ Sci 8:1799–1807. https://doi.org/10.1039/C5EE00682A

    Article  CAS  Google Scholar 

  34. Li Y et al (2016) Self-assembled NiFe2O4/carbon nanotubes sponge for enhanced glucose biosensing application. Appl Surf Sci 362:115–120. https://doi.org/10.1016/j.apsusc.2015.11.220

    Article  CAS  Google Scholar 

  35. Narlikar AV, Fu YY (2017) Oxford handbook of nanoscience and technology. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudir Gabriel Kaufmann Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaufmann, C.G., Schorne-Pinto, J. (2019). CNT Sponges for Environmental Applications. In: Kopp Alves, A. (eds) Nanomaterials for Eco-friendly Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-26810-7_1

Download citation

Publish with us

Policies and ethics