Advertisement

Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains

  • Sedigheh ZolaktafEmail author
  • Frits Dannenberg
  • Erik Winfree
  • Alexandre Bouchard-Côté
  • Mark Schmidt
  • Anne Condon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11648)

Abstract

Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.

References

  1. 1.
    Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res. 31, 3416–3422 (2003)CrossRefGoogle Scholar
  3. 3.
    Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Computational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318 (2010)CrossRefGoogle Scholar
  4. 4.
    Barton, R.R., Ivey Jr., J.S.: Nelder-Mead simplex modifications for simulation optimization. Manag. Sci. 42(7), 954–973 (1996)CrossRefGoogle Scholar
  5. 5.
    Bonnet, G., Krichevsky, O., Libchaber, A.: Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. 95(15), 8602–8606 (1998)CrossRefGoogle Scholar
  6. 6.
    Cherry, K.M., Qian, L.: Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559(7714), 370 (2018)CrossRefGoogle Scholar
  7. 7.
    Cisse, I.I., Kim, H., Ha, T.: A rule of seven in Watson-Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 19(6), 623 (2012)CrossRefGoogle Scholar
  8. 8.
    Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. Handb. Nonlinear Filter. 12(656–704), 3 (2009)zbMATHGoogle Scholar
  9. 9.
    Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)CrossRefGoogle Scholar
  10. 10.
    Georgoulas, A., Hillston, J., Sanguinetti, G.: Unbiased Bayesian inference for population Markov jump processes via random truncations. Stat. Comput. 27(4), 991–1002 (2017) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  12. 12.
    Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)CrossRefGoogle Scholar
  13. 13.
    Hajiaghayi, M., Kirkpatrick, B., Wang, L., Bouchard-Côté, A.: Efficient continuous-time Markov chain estimation. In: International Conference on Machine Learning, pp. 638–646 (2014)Google Scholar
  14. 14.
    Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econ. J. Econ. Soc. 50, 1029–1054 (1982)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hansen, L.P., Heaton, J., Yaron, A.: Finite-sample properties of some alternative GMM estimators. J. Bus. Econ. Stat. 14(3), 262–280 (1996)Google Scholar
  16. 16.
    Hata, H., Kitajima, T., Suyama, A.: Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics. Nucleic Acids Res. 46(2), 782–791 (2017)CrossRefGoogle Scholar
  17. 17.
    Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31(13), 3429–3431 (2003)CrossRefGoogle Scholar
  18. 18.
    Hordijk, A., Iglehart, D.L., Schassberger, R.: Discrete time methods for simulating continuous time Markov chains. Adv. Appl. Probab. 8(4), 772–788 (1976)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Horváth, A., Manini, D.: Parameter estimation of kinetic rates in stochastic reaction networks by the EM method. In: 2008 International Conference on BioMedical Engineering and Informatics, vol. 1, pp. 713–717. IEEE (2008)Google Scholar
  20. 20.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation. Springer, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Loskot, P., Atitey, K., Mihaylova, L.: Comprehensive review of models and methods for inferences in bio-chemical reaction networks. arXiv preprint arXiv:1902.05828 (2019)
  22. 22.
    Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of stochastic reaction networks. BMC Syst. Biol. 10(1), 98 (2016)CrossRefGoogle Scholar
  23. 23.
    Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)CrossRefGoogle Scholar
  24. 24.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  25. 25.
    Morrison, L.E., Stols, L.M.: Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32, 3095–3104 (1993)CrossRefGoogle Scholar
  26. 26.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ouldridge, T.E., Louis, A.A., Doye, J.P.: Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 134(8), 02B627 (2011)CrossRefGoogle Scholar
  28. 28.
    Schaeffer, J.M.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. Ph.D. thesis, California Institute of Technology (2012)Google Scholar
  29. 29.
    Schaeffer, J.M., Thachuk, C., Winfree, E.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 194–211. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21999-8_13CrossRefGoogle Scholar
  30. 30.
    Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics–a tutorial review. J. Phys. Math. Theor. 50(9), 093001 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schreck, J.S., et al.: DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Res. 43(13), 6181–6190 (2015)CrossRefGoogle Scholar
  32. 32.
    Srinivas, N., et al.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013)CrossRefGoogle Scholar
  33. 33.
    Suhov, Y., Kelbert, M.: Probability and Statistics by Example: Volume 2, Markov Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  34. 34.
    Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P., Louis, A.A.: Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137(13), 135101 (2012)CrossRefGoogle Scholar
  35. 35.
    Tang, X., Kirkpatrick, B., Thomas, S., Song, G., Amato, N.M.: Using motion planning to study RNA folding kinetics. J. Comput. Biol. 12(6), 862–881 (2005)CrossRefGoogle Scholar
  36. 36.
    Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Applications. Cengage Learning, Boston (2014)zbMATHGoogle Scholar
  37. 37.
    Wetmur, J.G.: Hybridization and renaturation kinetics of nucleic acids. Annu. Rev. Biophys. Bioeng. 5(1), 337–361 (1976)CrossRefGoogle Scholar
  38. 38.
    Xu, Z.Z., Mathews, D.H.: Experiment-assisted secondary structure prediction with RNAstructure. In: Turner, D., Mathews, D. (eds.) RNA Structure Determination: Methods and Protocols, pp. 163–176. Humana Press, New York (2016)CrossRefGoogle Scholar
  39. 39.
    Zadeh, J.N., et al.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)CrossRefGoogle Scholar
  40. 40.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)CrossRefGoogle Scholar
  41. 41.
    Zhang, J.X., et al.: Predicting DNA hybridization kinetics from sequence. Nat. Chem. 10(1), 91 (2018)CrossRefGoogle Scholar
  42. 42.
    Zolaktaf, S., et al.: Inferring parameters for an elementary step model of DNA structure kinetics with locally context-dependent arrhenius rates. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 172–187. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66799-7_12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sedigheh Zolaktaf
    • 1
    Email author
  • Frits Dannenberg
    • 2
  • Erik Winfree
    • 2
  • Alexandre Bouchard-Côté
    • 1
  • Mark Schmidt
    • 1
  • Anne Condon
    • 1
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations