Advertisement

Reversible Computation Using Swap Reactions on a Surface

  • Tatiana Brailovskaya
  • Gokul GowriEmail author
  • Sean Yu
  • Erik Winfree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11648)

Abstract

Chemical reaction networks (CRNs) and DNA strand displacement systems have shown potential for implementing logically and physically reversible computation. It has been shown that CRNs on a surface allow highly scalable and parallelizable computation. In this paper, we demonstrate that simple rearrangement reactions on a surface, which we refer to as swaps, are capable of physically reversible Boolean computation. We present designs for elementary logic gates, a method for constructing arbitrary feedforward digital circuits, and a proof of their correctness.

Notes

Acknowledgements

Support from National Science Foundation grant CCF-1317694 is gratefully acknowledged. We also thank Lulu Qian and Chris Thachuk for helpful discussion and comments.

References

  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Margolus, N.: Physics-like models of computation. Phys. D Nonlinear Phenom. 10, 81–95 (1984)MathSciNetCrossRefGoogle Scholar
  5. 5.
    D’Souza, R.M., Homsy, G.E., Margolus, N.H.: Simulating digital logic with the reversible aggregation model of crystal growth. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata, pp. 211–230. Oxford University Press, Oxford (2003)Google Scholar
  6. 6.
    Ouldridge, T.E.: The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics. Nat. Comput. 17, 3–29 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wolpert, D.: The stochastic thermodynamics of computation. J. Phys. Math. Theor. 52, 193001 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Perumalla, K.S.: Introduction to Reversible Computing. Chapman and Hall/CRC, Boca Raton (2013)CrossRefGoogle Scholar
  9. 9.
    Bennett, C.H.: The thermodynamics of computation-a review. Int. J. Theor. Phys. 21, 905–940 (1982)CrossRefGoogle Scholar
  10. 10.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107, 5393–5398 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.-J., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRefGoogle Scholar
  12. 12.
    Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017)CrossRefGoogle Scholar
  13. 13.
    Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 135–149. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32208-2_11CrossRefzbMATHGoogle Scholar
  14. 14.
    Codon, A., Hu, A.J., Manuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2, 512–521 (2012)CrossRefGoogle Scholar
  15. 15.
    Condon, A., Thachuk, C.: Towards space- and energy-efficient computations. In: Kempes, C., Grochow, J., Stadler, P., Wolpert, D. (eds.) The Energetics of Computing in Life and Machines, Chap. 9, pp. 209–232. The Sante Fe Institute Press, Sante Fe (2019)Google Scholar
  16. 16.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18305-8_12CrossRefzbMATHGoogle Scholar
  17. 17.
    Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 114–131. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11295-4_8CrossRefzbMATHGoogle Scholar
  18. 18.
    Goldschlager, L.M.: The monotone and planar circuit value problems are log space complete for P. ACM SIGACT News 9, 25–29 (1977)CrossRefGoogle Scholar
  19. 19.
    Masson, G.M., Gingher, G.C., Nakamura, S.: A sampler of circuit switching networks. Computer 12, 32–48 (1979) CrossRefGoogle Scholar
  20. 20.
    Savage, J.E.: Models of Computation. Addison-Wesley, Reading (1998). Section 12.6zbMATHGoogle Scholar
  21. 21.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  22. 22.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  23. 23.
    Johnson, R.F., Dong, Q., Winfree, E.: Verifying chemical reaction network implementations: a bisimulation approach. Theor. Comput. Sci. 765, 3–46 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tatiana Brailovskaya
    • 1
  • Gokul Gowri
    • 1
    Email author
  • Sean Yu
    • 1
  • Erik Winfree
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations