Skip to main content

Some Examples of the Use of IR Spectroscopy in Mineralogical Studies

Part of the Springer Mineralogy book series (MINERAL)

Abstract

In this chapter, numerous examples of the application of IR spectroscopy to the analysis of crystal-chemical features of minerals are considered. In particular, spectral bands that characterize different local situations around OH and BO33− groups in vesuvianite-group minerals are revealed. The effect of symmetry on the parameters of IR spectra of vesuvianite-group minerals is discussed. By means of IR and Raman spectroscopy methods, it is shown that the clathrate mineral melanophlogite is not a single species, but a mineral group including minerals with different combinations of small molecules (CO2, CH4, H2S, N2, H2O, C2H6) entrapped in structural cages. Based on numerous IR spectra of nakauriite samples from different localities, it is demonstrated that this mineral does not contain sulfate groups, and its tentative simplified formula (Mg3Cu2+)(OH)6(CO3)·4H2O is suggested. A close crystal chemical relationship between nepskoeite and shabynite is demonstrated based on their IR spectra and compositional and X-ray diffraction data. Contrary to the formula Mg4Cl(OH)7·6H2O accepted for nepskoeite, this mineral is a borate with the tentative simplified formula Mg5(BO3)(Cl,OH)2(OH)5·nH2O (n > 4). Consequently, shabynite may be a product of nepskoeite dehydration. Based on IR spectroscopic data, it is also shown that some nominally boron-free lead carbonate minerals (molybdophyllite, hydrocerussite, plumbonacrite, somersetite) often contain minor BO33− admixture which is overlooked in structural and chemical analyses.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-26803-9_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-26803-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15
Fig. 1.16
Fig. 1.17
Fig. 1.18
Fig. 1.19
Fig. 1.20
Fig. 1.21

References

  • Aksenov SM, Chukanov NV, Rusakov VS, Panikorovskii TL, Gainov RR, Vagizov FG, Rastsvetaeva RK, Lyssenko KA, Belakovskiy DI (2016) Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley, Pakistan. Acta Cryst B72:744–752

    Google Scholar 

  • Allen FM, Burnham CW (1992) A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth. Can Miner 30:1–18

    CrossRef  Google Scholar 

  • Apollonov VN (1998) Nepskoeite Mg4Cl(OH)7·6H2O, a new mineral from the Nepskoe K salt deposit. Zapiski VMO (Proc Russ Miner Soc) 127(1):41–46. (in Russian)

    Google Scholar 

  • Barnes JH (1986) Nakauriite, a new blue mineral from Cedar Hill. Pennsylvania Geol 17(5):6–8

    Google Scholar 

  • Bellatreccia F, Cámara F, Ottolini L, Della Ventura G, Cibin G, Mottana A (2005) Wiluite from Ariccia, Latium, Italy: occurrence and crystal structure. Can Miner 43:1457–1468

    CrossRef  Google Scholar 

  • Bernstein MP, Sandford SA (1999) Variations in the strength of the infrared forbidden 2328.2 cm−1 fundamental of solid N2 in binary mixtures. Spectrochim Acta A 55:2455–2466

    CrossRef  Google Scholar 

  • Borovikova EY, Kurazhkovskaya VS (2006) Influence of fluorine on the formation of ordered and disordered vesuvianite modifications: IR spectroscopic investigation. Zapiski RMO (Proc Russ Miner Soc) 135(2):89–95. (in Russian)

    Google Scholar 

  • Braithwaite RSW, Pritchard R (1983) Nakauriite from Unst, Shetland. Mineral Mag 47:84–85

    CrossRef  Google Scholar 

  • Britvin SN, Antonov AA, Krivovichev SV, Armbruster T, Burns PC, Chukanov NV (2003) Fluorvesuvianite, Ca19(Al,Mg,Fe2+)13[SiO4]10[Si2O7]4O(F,OH)9, a new mineral species from Pitkäranta, Karelia, Russia: description and crystal structure. Can Miner 41:1371–1380

    CrossRef  Google Scholar 

  • Brooker MH, Sunder S, Taylor P, Lopata VJ (1983) Infrared and Raman spectra and X-ray diffraction studies of solid lead (II) carbonates. Can J Chem 61:494–502

    CrossRef  Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht. (1716 pp)

    CrossRef  Google Scholar 

  • Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, Cham. (1109 pp)

    CrossRef  Google Scholar 

  • Chukanov NV, Jonsson E, Aksenov SM, Britvin SN, Rastsvetaeva RK, Belakovskiy DI, Van KV (2017b) Roymillerite, Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, a new mineral: mineralogical characterization and crystal chemistry. Phys Chem Minerals. https://doi.org/10.1007/s00269-017-0893-2

    CrossRef  Google Scholar 

  • Chukanov NV, Panikorovskii TL, Chervonnyi AD (2018) On the relationships between crystal-chemical characteristics of vesuvianite-group minerals and their IR spectra. Zapiski RMO (Proc Russ Miner Soc) 147(1):112–128. (in Russian)

    Google Scholar 

  • Edwards HG, Villar SEJ, Jehlicka J, Munshi T (2005) FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim Acta A 61(10):2273–2280

    CrossRef  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Exploration 112:1–20

    CrossRef  Google Scholar 

  • Galuskin EV, Armbruster T, Malsy A, Galuskina IO, Sitarz M (2003) Morphology, composition and structure of low-temperature P4/nnc high-fluorine vesuvianite whiskers from Polar Yakutia, Russia. Can Miner 41:843–856

    CrossRef  Google Scholar 

  • Gies H (1983) Studies on clathrasils. III. Crystal structure of melanophlogite, a natural clathrate compound of silica. Z Kristallogr 164:247–257

    Google Scholar 

  • Gies H, Gerke H, Liebau F (1982) Chemical composition and synthesis of melanophlogite, a clathrate compound of silica. N Jb Mineral Mh 3:119–124

    Google Scholar 

  • Groat LА, Hawthorпe FС, Erict ТS (1995) The chemistry of vesuvianite. Can Miner 33:19–48

    CrossRef  Google Scholar 

  • Ibáñez-Insa J, Elvira JJ, Llovet X, Pérez-Cano J, Oriols N, Busquets-Masó M, Hernández S (2017) Abellaite, NaPb2(CO3)2(OH), a new supergene mineral from the Eureka mine, Lleida province, Catalonia, Spain. Eur J Mineral. https://doi.org/10.1127/ejm/2017/0029-2630

    CrossRef  Google Scholar 

  • Kohlrausch KWF (1943) Ramanspektren. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Kolesov BA, Geiger CA (2003) Molecules in the SiO2-clathrate melanophlogite: a single-crystal Raman study. Am Miner 88(8–9):1364–1368

    Google Scholar 

  • Kolitsch U, Merlino S, Holtstam D (2012) Molybdophyllite: crystal chemistry, crystal structure, OD character and modular relationships with britvinite. Mineral Mag 76(3):493–516

    CrossRef  Google Scholar 

  • Krivovichev SV, Burns P (2000) Crystal chemistry of basic lead carbonates. II. Crystal structure of synthetic ‘plumbonacrite’. Mineral Mag 64:1969–1975

    Google Scholar 

  • Krivovichev SV, Turner R, Rumsey M, Siidra OI, Kirk CA (2009) The crystal structure and chemistry of mereheadite. Mineral Mag 73:103–117

    CrossRef  Google Scholar 

  • Kurazhkovskaya VS, Borovikova EY (2003) IR spectra of high-symmetry and low-symmetry vesuvianites. Zapiski RMO (Proc Russ Miner Soc) 132(1):109–121. (in Russian)

    Google Scholar 

  • Kurazhkovskaya VS, Borovikova EY, Alferova MS (2005) Infrared spectra, unit cell parameters and optical sign of boron-bearing vesuvianites and wiluites. Zapiski RMO (Proc Russ Miner Soc) 134:82–91. (in Russian)

    Google Scholar 

  • Lager GA, Xie Q, Ross FK, Rossman GR, Armbruster T, Rotella FJ, Schultz AJ (1999) Hydrogen-atom position in P4/nnc vesuvianite. Can Miner 37:763–768

    Google Scholar 

  • Libowitzky E (1999) Correlation of OH stretching frequencies and OH···O hydrogen bond lengths in minerals. Monatshefte für Chemie 130:1047–1059

    Google Scholar 

  • Momma K, Ikeda T, Nishikubo K, Takahashi N, Honma C, Takada M, Furukawa Y, Nagase T, Kudoh Y (2011) New silica clathrate minerals that are isostructural with natural gas hydrates. Nat Commun 2:196. (7 pp)

    CrossRef  Google Scholar 

  • Nakagawa T, Kihara K, Harada K (2001) The crystal structure of low melanophlogite. Am Miner 86:1506–1512

    CrossRef  Google Scholar 

  • Palenzona A, Martinelli A (2007) La nakauriite del Monte Ramazzo, Genova. Rivista Mineral Ital 31(1):48–51. (in Italian)

    Google Scholar 

  • Paluszkiewicz C, Żabiński W (1992) Far infrared spectra of vesuvianite: preliminary report. Mineralogia Polonica 23(1):13–16

    Google Scholar 

  • Panikorovskii TL, Krivovichev SV, Galuskin EV, Shilovskikh VV, Mazur AS, Bazai AV (2016a) Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: a combined single-crystal, 1H MAS-NMR and IR spectroscopic study. Eur J Mineral 28:931–941

    CrossRef  Google Scholar 

  • Panikorovskii TL, Krivovichev SV, Yakovenchuk VN, Shilovskikh VV, Mazur AS (2016d) Crystal chemistry of Na-bearing vesuvianite from fenitized gabbroid of the Western Keivy (Kola peninsula, Russia). Zapiski RMO 145(5):83–95. (in Russian)

    Google Scholar 

  • Panikorovskii TL, Chukanov NV, Aksenov SM, Mazur AS, Avdontseva EY, Shilovskikh VV, Krivovichev SV (2017a) Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. Miner Petrol 111(6):833–842

    CrossRef  Google Scholar 

  • Panikorovskii TL, Mazur AS, Bazai AV, Shilovskikh VV, Galuskin EV, Chukanov NV, Rusakov VS, Zhukov YM, Avdontseva EY, Aksenov SM, Krivovichev SV (2017b) X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature. Phys Chem Mineral 44(8):577–593

    CrossRef  Google Scholar 

  • Panikorovskii TL, Shilovskikh VV, Avdontseva EY, Zolotarev AA, Karpenko VY, Mazur AS, Yakovenchuk VN, Krivovichev SV, Pekov IV (2017d) Magnesiovesuvianite, Ca19Mg(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral. J Geosc (Czech Republic) 62:25–36

    CrossRef  Google Scholar 

  • Peacor DR, Simmons WB Jr, Essene EJ, Heinrich EW (1982) New data on and discreditation of “texasite”, “albrittonite”, “cuproartiniter”, “cuprohydromagnesite”and “yttromicrolite” with corrected data on nickelbischofite, rowlandite, and yttrocrasite. Am Mineral 67:156–169

    Google Scholar 

  • Pertsev NN, Malinko SV, Vakhrushev VA, Fitsev BP, Sokolova EV, Nikitina IB (1980) Shabynite, a new hydrous magnesium borate chloride. Zapiski VMO (Proc Russ Miner Soc) 109(5):569–573. (in Russian)

    Google Scholar 

  • Popov VA, Kolisnichenko SV, Blinov IA (2016) Nickelean copper and nakauriite from the Blue vein in ultramafites of the Verkhniy Ufaley Region, Southern Urals. Preprint of the Institute of Mineralogy, Uralian Branch of the Russian Academy of Sciences, Miass. (in Russian)

    Google Scholar 

  • Postl W, Moser B (1988) Nakauriite from Lobminggraben. Mineralogische Notizen aus der Steiermark. Mitt Abt Miner Landesmuseum Joanneum 56:5–47. (in German)

    Google Scholar 

  • Suzuki J, Ito M, Sugiura T (1976) A new copper sulfate-carbonate hydroxide hydrate mineral, (Mn,Ni,Cu)8(SO4)4(CO3)(OH)6·48H2O, from Nakauri, Aichi Prefecture, Japan. J Mineral Petrol Econ Geol 71:183–192

    CrossRef  Google Scholar 

  • Wang X, Ming-Chou I, Hu W, Burruss RC, Sun Q, Song Y (2011) Raman spectroscopic measurements of CO2 density: experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochim Cosmochim Acta 75:4080–4093

    CrossRef  Google Scholar 

  • Yakubovich OV, Massa W, Chukanov NV (2008) Crystal structure of britvinite [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]: a new layered silicate with an original type of silicon-oxygen networks. Crystallogr Repts 53(2):206–215

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chukanov, N.V., Vigasina, M.F. (2020). Some Examples of the Use of IR Spectroscopy in Mineralogical Studies. In: Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-26803-9_1

Download citation