Skip to main content

On Idempotent n-ary Uninorms

  • 520 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11676)


In this paper we describe the class of idempotent n-ary uninorms on a given chain. When the chain is finite, we axiomatize the latter class by means of the following conditions: associativity, quasitriviality, symmetry, and nondecreasing monotonicity. Also, we show that associativity can be replaced with bisymmetry in this new axiomatization.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-26773-5_9
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-26773-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

    This paper is also an extended version of [7].

  2. 2.

    When \(X=X_k\) for some integer \(k\ge 1\), the graphical representation of \(f_{\preceq }\) is then obtained by joining the points \((1,1),\ldots ,(k,k)\) by line segments.

  3. 3.

    To simplify the representation of the connected components, we omit edges that can be obtained by transitivity.


  1. Berg, S., Perlinger, T.: Single-peaked compatible preference profiles: some combinatorial results. Soc. Choice Welf. 27(1), 89–102 (2006)

    CrossRef  MathSciNet  Google Scholar 

  2. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34 (1948)

    CrossRef  Google Scholar 

  3. Black, D.: The Theory of Committees and Elections. Kluwer Academic Publishers, Dordrecht (1987)

    MATH  Google Scholar 

  4. Couceiro, M., Devillet, J., Marichal, J.-L.: Characterizations of idempotent discrete uninorms. Fuzzy Sets Syst. 334, 60–72 (2018)

    CrossRef  MathSciNet  Google Scholar 

  5. De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)

    CrossRef  Google Scholar 

  6. Devillet, J., Kiss, G., Marichal, J.-L.: Characterizations of quasitrivial symmetric nondecreasing associative operations. Semigroup Forum 98(1), 154–171 (2019)

    CrossRef  MathSciNet  Google Scholar 

  7. Devillet, J., Kiss, G., Marichal, J.-L.: Characterizations of idempotent n-ary uninorms. In: Proceedings of the 38th Linz Seminar on Fuzzy Set Theory (LINZ 2019), Linz, Austria, 4 p. 5–8 February 2019

    Google Scholar 

  8. Grabisch, M., Marichal, J.-L., Mesiar, J.-L., Pap, E.: Aggregation Functions: Encyclopedia of Mathematics and Its Applications, no. 127. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  9. Kiss, G., Somlai, G.: A characterization of \(n\)-associative, monotone, idempotent functions on an interval that have neutral elements. Semigroup Forum 96(3), 438–451 (2018)

    CrossRef  MathSciNet  Google Scholar 

  10. Mesiarová-Zemánková, M.: A note on decomposition of idempotent uninorms into an ordinal sum of singleton semigroups. Fuzzy Sets Syst. 299, 140–145 (2016)

    CrossRef  MathSciNet  Google Scholar 

  11. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    CrossRef  MathSciNet  Google Scholar 

Download references


The first author is supported by the Luxembourg National Research Fund under the project PRIDE 15/10949314/GSM. The second author is also supported by the Hungarian National Foundation for Scientific Research, Grant No. K124749.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jimmy Devillet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Devillet, J., Kiss, G., Marichal, JL. (2019). On Idempotent n-ary Uninorms. In: Torra, V., Narukawa, Y., Pasi, G., Viviani, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2019. Lecture Notes in Computer Science(), vol 11676. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26772-8

  • Online ISBN: 978-3-030-26773-5

  • eBook Packages: Computer ScienceComputer Science (R0)