Skip to main content

Making Decisions with Knowledge Base Repairs

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11676))

Abstract

Building large knowledge bases (KBs) is a fundamental task for automated reasoning and intelligent applications. Needing the interaction between domain and modeling knowledge, it is also error-prone. In fact, even well-maintained KBs are often found to lead to unwanted conclusions. We deal with two kinds of decisions associated with faulty KBs. First, which portions of the KB (and their conclusions) can still be trusted? Second, which is the correct way to repair the KB? Our solution to both problems is based on storing all the information about repairs in a compact data structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, New York (2003)

    BookĀ  Google ScholarĀ 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, New York (2007)

    MATHĀ  Google ScholarĀ 

  3. Baader, F., PeƱaloza, R.: Automata-based axiom pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 226ā€“241. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_19

    ChapterĀ  Google ScholarĀ 

  4. Baader, F., PeƱaloza, R.: Axiom pinpointing in general tableaux. J. Logic Comput. 20(1), 5ā€“34 (2010). https://doi.org/10.1093/logcom/exn058

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: Proceedings IJCAI 2013, pp. 775ā€“781. AAAI Press (2013)

    Google ScholarĀ 

  6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google ScholarĀ 

  7. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: Proceedings IJCAI 2011, pp. 819ā€“826. IJCAI/AAAI (2011)

    Google ScholarĀ 

  8. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. In: Proceedings TARK 1994, pp. 5ā€“23 (1994)

    Google ScholarĀ 

  9. Drechsler, R., Becker, B.: Binary Decision Diagrams - Theory and Implementation. Springer, Berlin (1998)

    BookĀ  Google ScholarĀ 

  10. Ludwig, M., PeƱaloza, R.: Error-tolerant reasoning in the description logic \(\cal{E{}L}\). In: FermĆ©, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 107ā€“121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_8

    ChapterĀ  MATHĀ  Google ScholarĀ 

  11. PeƱaloza Nyssen, R.: Axiom pinpointing in description logics and beyond. Ph.D. thesis, Technische UniversitƤt Dresden, Germany (2009)

    Google ScholarĀ 

  12. PeƱaloza, R.: Inconsistency-tolerant instance checking in tractable description logics. In: Costantini, S., Franconi, E., Van Woensel, W., Kontchakov, R., Sadri, F., Roman, D. (eds.) RuleML+RR 2017. LNCS, vol. 10364, pp. 215ā€“229. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61252-2_15

    ChapterĀ  Google ScholarĀ 

  13. PeƱaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in lightweight description logics. Artif. Intell. 250, 80ā€“104 (2017)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. PeƱaloza, R., Thuluva, A.S.: Iterative ontology updates using context labels. In: Proceedings JOWO 2015. CEUR Workshop Proceedings, vol. 1517. CEUR-WS.org (2015)

    Google ScholarĀ 

  15. Price, C., Spackman, K.: Snomed clinical terms. Br. J. Healthc. Comput. Inf. Manag. 17(3), 27ā€“31 (2000)

    Google ScholarĀ 

  16. Reiter, R.: A theory of diagnosis from first principles. AIJ 32(1), 57ā€“95 (1987)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1), 59ā€“98 (1949)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. Zese, R., Bellodi, E., Riguzzi, F., Cota, G., Lamma, E.: Tableau reasoning for description logics and its extension to probabilities. AMAI 82(1ā€“3), 101ā€“130 (2018)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael PeƱaloza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

PeƱaloza, R. (2019). Making Decisions with Knowledge Base Repairs. In: Torra, V., Narukawa, Y., Pasi, G., Viviani, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2019. Lecture Notes in Computer Science(), vol 11676. Springer, Cham. https://doi.org/10.1007/978-3-030-26773-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26773-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26772-8

  • Online ISBN: 978-3-030-26773-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics