ψ-type Synchronization of Memristor-Based Competitive Neural Networks with Time-Varying Delays via Nonlinear Feedback Control

  • Yue Chen
  • Zhenkun HuangEmail author
  • Chao Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11643)


This paper is concerned with the ψ-type synchronization of memristive-based competitive neural networks with time-varying delays. A nonlinear feedback controller and Lyapunov-Krasovskii function are constructed properly, as well as using corresponding differential inclusions theory and lemmas, the ψ-type synchronization of coupled neural networks is obtained. The results of this paper are general, and they also extend and complement some previous results. A simulation example is carried out to show the effectiveness of theoretical results.


Competitive neural network ψ-type synchronization Nonlinear feedback control Lyapunov-Krasovskii functional 


  1. 1.
    Zeng, Z., Wang, J.: Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays. Neural Comput. 19(8), 2149–2182 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cheng, L., Hou, Z.G., Lin, Y.: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans. Neural Netw. 22(5), 714–726 (2011)CrossRefGoogle Scholar
  3. 3.
    Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circ. Syst. 35(10), 1273–1290 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Huang, Z.K., Cao, J.D., Li, J.M.: Quasi-synchronization of neural networks with parameter mismatches and delayed impulsive controller on time scales. Nonlinear Anal. Hybrid Syst. 33, 104–115 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chua, L.: Memristor-The missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  6. 6.
    Strukov, D.B., Snider, G.S., Stewart, D.R.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  7. 7.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcation Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu, A., Zeng, Z., Zhu, X.: Exponential synchronization of memristor-based recurrent neural networks with time delays. Neurocomputing 74(17), 3043–3050 (2011)CrossRefGoogle Scholar
  9. 9.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circ. Syst. I: Regul. Pap. 58(6), 1323–1336 (2011)MathSciNetGoogle Scholar
  10. 10.
    Milanovic, V., Zaghloul, M.E.: Synchronization of chaotic neural networks and applications to communications. Int. J. Bifurcation Chaos 06(12b), 2571–2585 (1996)CrossRefGoogle Scholar
  11. 11.
    Merrikh-Bayat, F., Shouraki, S.B.: Memristor-based circuits for performing basic arithmetic operations. Procedia Comput. Sci. 3, 128–132 (2011)CrossRefGoogle Scholar
  12. 12.
    Meyer-Bäse, A., Ohl, F., Scheich, H.: Singular Perturbation Analysis of Competitive Neural Networks with Different Time-Scales. MIT Press, Cambridge (1996)CrossRefGoogle Scholar
  13. 13.
    Nie, X., Cao, J.: Multistability of competitive neural networks with time-varying and distributed delays. Nonlinear Anal. Real World Appl. 10(2), 928–942 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cheng, C.J., Liao, T.L., Yan, J.J.: Exponential synchronization of a class of neural networks with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(1), 209–215 (2006)CrossRefGoogle Scholar
  15. 15.
    Lu, H., Leeuwen, C.V.: Synchronization of chaotic neural networks via output or state coupling. Chaos Solitons Fractals 30(1), 166–176 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, G., Zhou, J., Liu, Z.: Global synchronization of coupled delayed neural networks and applications to chaotic cnn models. Int. J. Bifurcation Chaos 14(07), 2229–2240 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39(1), 288–294 (2009)CrossRefGoogle Scholar
  18. 18.
    Cheng, G., Peng, K.: Robust composite nonlinear feedback control with application to a servo positioning system. IEEE Trans. Ind. Electron. 54(2), 1132–1140 (2007)CrossRefGoogle Scholar
  19. 19.
    Deng, M., Inoue, A., Ishikawa, K.: Operator-based nonlinear feedback control design using robust right coprime factorization. IEEE Trans. Autom. Control 51(4), 645–648 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tang, Y., Gao, H., Zou, W.: Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 43(1), 358–370 (2012)Google Scholar
  21. 21.
    Filippov, A.F.: Differential Equations With Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Shen, Y., Zhang, G.: Synchronization of a class of switched neural networks with time-varying delays via nonlinear feedback control. IEEE Trans. Cybern. 46(10), 2300–2310 (2016)CrossRefGoogle Scholar
  23. 23.
    Shi, Y., Zhu, P.: Synchronization of memristive competitive neural networks with different time scales. Neural Comput. Appl. 25(5), 1163–1168 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ScienceJimei UniversityXiamenChina

Personalised recommendations