Skip to main content

Combining Bacteriophages with Other Antibacterial Agents to Combat Bacteria

  • Chapter
  • First Online:
Phage Therapy: A Practical Approach

Abstract

Bacteriophages have been used to control bacterial growth, but so far, they have also been successfully combined with various antibacterial agents that inhibit cell wall synthesis, cell membrane function, DNA replication, transcription or translation, etc. Many combinations have shown greater activity against bacteria in comparison to individual activities of the applied agents. This phenomenon, denoted as synergy, has been firstly recorded in the 1940s for penicillin and Staphylococcus phage K combination and further widely examined during the last decade. The synergy is observed both against planktonic and biofilm embedded bacterial cells and this approach possesses many advantages, mainly because of decreased effective concentration of chemical antibacterial agents and reduction of resistance occurrence. The mechanisms of synergistic interaction has not yet been fully elucidated but probably comprise change of bacterial phenotypic properties (e.g., cell elongation, change of cell surface properties, degradation of exopolysaccharides) and elimination of phage-resistant and antibiotic-resistant mutants during combined treatment. The future studies of synergy between chemical agents and phages should overcome current shortfalls, particularly those related to methodology, as well as phage and antibiotic selection. Several studies have confirmed the phenomenon in vivo, but additional studies, including well-designed clinical trials, are necessary for therapeutic exploitation of the synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  CAS  PubMed  Google Scholar 

  • Aleksic V, Mimica-Dukic N, Simin N, Stankovic Nedeljkovic N, Knezevic P (2014) Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 21:1666–1674

    Article  CAS  PubMed  Google Scholar 

  • Ali HMH, Abd AKH, Abdulameer AS, Tah RN (2015) Efficacy of bacteriophage-antibiotic combinations against Staphylococcus aureus infections: in vitro study. Int J Pharm Sci Rev Res 30(1):186–189

    Google Scholar 

  • Alonso JC, Sarachu AN, Grau O (1981) DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. J Virol 39(3):855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altenbern RA (1953) The action of aureomycin on the Escherichia coli bacteriophage T3 system. J Bacteriol 65(3):288–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson TF (1943) The action of an antibiotic substance (penatin) on bacteriophage. J Bacteriol 46:110

    Google Scholar 

  • Auerbach A, Kerem E, Assous MV, Picard E, Bar-Meir M (2015) Is infection with hypermutable Pseudomonas aeruginosa clinically significant? J Cyst Fibros 14(3):347–352

    Article  PubMed  Google Scholar 

  • Bassole IHN, Lamien-Meda A, Bayala B, Obame LC, Ilboudo AJ, Franz C, Novak J, Nebie RC, Dicko MH (2011) Chemical composition and antimicrobial activity of Cymbopogon citrates and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 18:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191

    Article  CAS  PubMed  Google Scholar 

  • Bedi MS, Verma V, Chhibber S (2009) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25:1145–1151

    Article  CAS  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Article  Google Scholar 

  • Bozeman FM, Wisseman CL, Hopps HE, Danauskas JH (1954) Action of chloramphenicol on t-1 bacteriophage. I. Inhibition of intracellular multiplication. J Bacteriol 67(5):530–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briers Y, Walmagh M, Lavigne R (2011) Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol 110:778–785

    Article  CAS  PubMed  Google Scholar 

  • Burrowes B, Harper DR, Anderson J, McConville M, Enright MC (2011) Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti-Infect Ther 9:775–785

    Article  PubMed  Google Scholar 

  • Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12(1):e0168615. https://doi.org/10.1371/journal.pone.0168615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhibber S, Nag D, Bansal S (2013) Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 13:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhibber S, Bansal S, Kaur S (2015) Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology 161:1369–1377

    Article  CAS  PubMed  Google Scholar 

  • Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM (2007) Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2:e799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantinou A, Voelkel-Meiman K, Sternglanz R, McCorquodale M, McCorquodale D (1986) Involvement of host DNA gyrase in growth of bacteriophage T5. J Virol 57(3):875–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulter LB, McLean RJ, Rohde RE, Aron GM (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 6(10):3778–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes rendus Acad Sci Paris 165:373–375

    Google Scholar 

  • d’Hérelle F (1919) Sur le rôle du microbe bactériophage dans la typhose aviaire. C R Acad Sci 169:932–934

    Google Scholar 

  • Daniel A, Euler C, Collin M et al (2010) Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos D, Pirnay JP (2015) Phage therapy: could viruses help resolve the worldwide antibiotics crisis? Alternatives to antibiotics, pp 110–114

    Google Scholar 

  • Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, Michiels J, Lavigne R, Briers Y (2016) Efficacy of artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother 60(6):3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickey J, Perrot V (2019) Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One 14(1):e0209390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djurkovic S, Loeffler JM, Fischetti VA (2005) Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob Agents Chemother 49(3):1225–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doern CD (2014) When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol 52(12):4124–4128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Q, Wang J, Yang H, Wei C, Yu J, Zhang Y, Huang Y, Zhang XE, Wei H (2015) Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb Biotechnol 8(2):210–220

    Article  CAS  PubMed  Google Scholar 

  • Dosmar M, Markewych O, Witmer H (1977) Effect of antibiotics on certain aspects of bacteriophage SP-15 development in Bacillus subtilis W23. J Virol 21(3):924–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dublanchet A, Bourne S (2007) The epic of phage therapy. Can J Infect Dis Med Microbiol 18(1):15–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Edlinger E (1951) Action of chloromycetin on the multiplication of bacteriophage. Ann Inrt Pasteur 81:514–522

    CAS  Google Scholar 

  • Edlinger E, Faguet M (1950) Antibiotics and bacteriophage lysis; IV. Microbiophotometric study of the combined action of bacteriophage and streptomycin on the culture of a Staphylococcus albus. Ann Inst Pasteur (Paris) 78(1):144–146

    CAS  Google Scholar 

  • Edlinger E, Faguet M (1951) Antibiotics and bacteriophage lysis. IX. Effect of terramycin on bacteriophage lysis, studied by microbiophotometer. Ann Inst Pasteur (Paris) 81(2):221–224

    CAS  Google Scholar 

  • Ehrlich P (1910) Anwendung und wirkung von salvarsan. Dtsch Med Wochenschr:437–2438

    Google Scholar 

  • Eliopoulus GM, Moellering RC (1996) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine, 4th edn. The Williams & Wilkins, Baltimore, MD, pp 330–396

    Google Scholar 

  • Escobar-Páramo P, Gougat-Barbera C, Hochberg ME (2012) Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage. Evol Appl 5(6):583–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eucast definitive document E. Def 1.2 (2000) Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)

    Google Scholar 

  • Figueiredo ACL, Almeida RCC (2017) Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz J Microbiol 48(4):724–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischetti VA, Nelson D, Schuch R (2006) Reinventing phage therapy: are the parts greater than the sum? Nat Biotechnol 24:1508–1511

    Article  CAS  PubMed  Google Scholar 

  • Fong SA, Drilling A, Morales S et al (2017) Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 7:418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fothergill JL, Mowat E, Walshaw MJ, Ledson MJ, James CE, Winstanley C (2011) Effect of antibiotic treatment on bacteriophage production by a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(1):426–428

    Article  CAS  PubMed  Google Scholar 

  • García P, Martínez B, Rodríguez L, Rodríguez A (2010) Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Internat J Food Microbiol 141:151–155

    Article  CAS  Google Scholar 

  • Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 108(2):695–702

    Article  CAS  PubMed  Google Scholar 

  • Górski A, Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Lobocka M, Fortuna W et al (2009) Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 10:766–774

    PubMed  Google Scholar 

  • Gratia A (1922) Essais de therapeutique au moyen du bacteriophage du staphylocoque. C R Soc Biol 86:276–278

    Google Scholar 

  • Gupta S, Govil D, Kakar PN et al (2009) Colistin and polymyxin B: a re-emergence. Indian J Crit Care Med 13(2):49–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagens S, Habel A, Blasi U (2006) Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage. Microb Drug Resist 12(3):164–168

    Article  CAS  PubMed  Google Scholar 

  • Hanlon GW (2007) Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 30(2):118–128

    Article  CAS  PubMed  Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Werthen HG, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    Article  CAS  PubMed Central  Google Scholar 

  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M (2011) Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 15(4):305–311

    Article  PubMed  Google Scholar 

  • Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–652

    Article  CAS  PubMed  Google Scholar 

  • Himmelweit F (1945) Combined action of penicillin and bacteriophage on Staphylococci. Lancet 246:104–105

    Article  Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11(7):1511–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM (2004) Therapeutic efficacy of bacteriophage and baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult Sci 83:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases–novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Wahida A, Latz S, Krüttgen A, Häfner H, Buhl EM, Ritter K, Horz HP (2018) Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep 8:14140. https://doi.org/10.1038/s41598-018-32344-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo A, Kim J, Ding T, Ahn J (2016) Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food Sci Biotechnol 25(4):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D (1945) The effect of antibiotic substances upon bacteriophage. J Bacteriol 50(122):341

    PubMed  PubMed Central  Google Scholar 

  • Kamal F, Dennis JJ (2014) Burkholderia cepacia complex phage-antibiotic synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81(3):1132–1138

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Harjai K, Chhibber S (2012) Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotic. Appl Environ Microbiol 78(23):8227–8233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Harjai K, Chhibber S (2016) In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One 11(6):e0157626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim NH, Park WB, Cho JE et al (2018a) Effect of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus. Antimicrob Agents Chemother 62(10): pii: e00731–e00718

    Google Scholar 

  • Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K, Myung H (2018b) Phage-antibiotic synergy via delayed lysis. Appl Environ Microbiol 84(22). pii: e02085–e02018

    Google Scholar 

  • Kirby AE (2012) Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 7(11):e51017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knezevic P, Petrovic O (2008) A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 74(2–3):114–118

    Article  CAS  PubMed  Google Scholar 

  • Knezevic P, Obreht D, Curcin S, Petrusic M, Aleksic V, Kostanjsek R, Petrovic O (2011) Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J Appl Microbiol 111:245–254

    Article  CAS  PubMed  Google Scholar 

  • Knezevic P, Curcin S, Aleksic V, Petrusic M, Lj V (2013) Phage-antibiotic synergism: a possible approach to combating Pseudomonas aeruginosa. Res Microbiol 164:55–60

    Article  CAS  PubMed  Google Scholar 

  • Knezevic P, Voet M, Lavigne R (2015) Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology 483:64–71

    Article  CAS  PubMed  Google Scholar 

  • Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N (2016) Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharrmacol 178:125–136

    Article  CAS  Google Scholar 

  • Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo J-S, Carli A, Abdelbary H (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595

    Article  CAS  PubMed  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and applications. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17(11):4406–4414

    Article  CAS  PubMed  Google Scholar 

  • Kysela DT, Turner PE (2007) Optimal bacteriophage mutation rates for phage therapy. J Theor Biol 249(3):411–421

    Article  CAS  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  • Lai MJ, Lin NT, Hu A et al (2011) Antibacterial activity of Acinetobacter baumannii phage varphiAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 90:529–539

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage–a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Article  Google Scholar 

  • Letrado P, Corsini B, Diez-Martinez R, Bustamante N, Yuste JE, Garcia P (2018) Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus. Future Microbiol 13(11):1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69(8):4519–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao KS, Lehman SM, Tweardy DJ, Donlan RM, Trautner BW (2012) Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J Appl Microbiol 113(6):1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Chang RYK, Britton WJ, Morales S, Kutter E, Chan HK (2018) Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa. Int J Pharm 551(1–2):158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (2003) Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 51(2):ii9–i16

    CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Loeffler JM, Fischetti VA (2003) Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother 47:375–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes A, Pereira C, Almeida A (2018) Sequential combined effect of phages and antibiotics on the inactivation of Escherichia coli. Microorganisms 6(4):125

    Article  PubMed Central  Google Scholar 

  • Los JM, Golec P, Wegrzyn G, Wegrzyn A, LoÅ› M (2008) Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl Environ Microbiol 74(16):5113–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106(12):4629–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524–531

    Article  PubMed  Google Scholar 

  • Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP et al (2012) Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci U S A 109:9857–9862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Manoharadas S, Witte A, Blasi U (2009) Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol 139(1):118–123

    Article  CAS  PubMed  Google Scholar 

  • Martinez B, Obeso JM, Rodríguez A, García P (2008) Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122:253–258

    Article  CAS  PubMed  Google Scholar 

  • Moulton-Brown CE, Friman V-P (2018) Rapid evolution of generalized resistance mechanisms can constrain the efficacy of phage–antibiotic treatments. Evol Appl 11(9):1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulyaningsih S, Youns M, El-Readi MZ, Ashour ML, Nibret E, Sporer F, Herrmann F, Reichling J, Wink M (2010) Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. J Pharm Pharmacol 62(8):1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Nayak PA, Nayak UA, Khandelwal V (2014) The effect of xylitol on dental caries and oral flora. Clin Cosmet Investig Dent 6:89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neter E (1942) Effects of tyrothricin and actinomycin a upon bacteriophage and bacterial toxins and toxin-like substances. J Bacteriol 43:10

    Google Scholar 

  • Neter E, Clark P (1944) On the effects of penicillin on staphylococcus bacteriophage. J Bacteriol 48:261

    Google Scholar 

  • Nicolle P, Faguet M (1947) La synergie lytique de la pénicilline et du bactériophage, étudiée au microbiophotomètre. Ann Inst Pasteur 73:490–495

    CAS  Google Scholar 

  • Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119(2):192–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAAM (2016) Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med 52:99–105

    Article  Google Scholar 

  • Oechslin F, Piccardi P, Mancini S et al (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215(5):703–712

    CAS  PubMed  Google Scholar 

  • Oliveira A, Ribeiro HG, Silva AC, Silva MD, Sousa JC, Rodrigues CF, Melo LDR, Henriques AF, Sillankorva S (2017) Synergistic antimicrobial interaction between honey and phage against escherichia coli biofilms. Front Microbiol 8:2407

    Article  PubMed  PubMed Central  Google Scholar 

  • Osburne MS, Sonenshein AL (1980) Inhibition by lipiarmycin of bacteriophage growth in Bacillus subtilis. J Virol 33(3):945–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papukashvili I, Lomadze E, Mdzinarashvili T (2016) The action of bacteriophages and β-lactam antibiotic on P. aeruginosa biofilm formation. Bulletin georgian Nat. Acad Sci 10(1):91–96

    CAS  Google Scholar 

  • Partridge SR (2011) Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 35:820–855

    Article  CAS  PubMed  Google Scholar 

  • Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res 2005:41–47

    Article  Google Scholar 

  • Pillai SK, Moellering RC, Eliopoulos GM (2005) Antimicrobial combinatons. In: Lorian V (ed) Antibiotics in laboratory medicine. Lippincott Williams and Wilkins, Philadelphia, pp 365–440

    Google Scholar 

  • Pockels W (1927) Die Bakteriophagen therapie in der Kinderheilkunde. Monatsschir Kinderheilkunde 35:229–236

    Google Scholar 

  • Price AR, Fogt SM (1973) Effect of nalidixic acid on PBS2 bacteriophage infection of Bacillus subtilis. J Virol 12(2):405–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prince A, Sandhu P, Ror P et al (2016) Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep 6:37908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Kim S, Kim SM, Seol SY, Kim J (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Raya RR, H’bert EM (2009) In: Bacteriophages E, Clokie MRJ, Kropinski AM (eds) Isolation of phage via induction of lysogens. Springer, pp 23–32

    Google Scholar 

  • Read AF, Day T, Huijben S (2011) The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proc Natl Acad Sci U S A 108:10871–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Cerrato V, García P, del Prado G, García E, Garcia M, Huelves L, Ponte C, López R, Soriano F (2007) In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and Pal), cefotaxime and moxifloxacin against antibiotic-susceptible and -resistant Streptococcus pneumoniae strains. J Antimicrob Chemother 60:1159–1162

    Article  PubMed  CAS  Google Scholar 

  • Rolinson GN (1979) 6-APA and the development of the β-lactam antibiotics. J Antimicrob Chemother 5:7–14

    Article  CAS  PubMed  Google Scholar 

  • Ronayne EA, Wan YCS, Boudreau BA, Landick R, Cox MM (2016) P1 Ref endonuclease: a molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genet 12(1):e1005797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Rountree PM (1947) Staphylococcal bacteriophages. I. The effect of penicillin on staphylococcal bacteriophages. Aust J Exp Biol Med Sci 25:9

    Article  CAS  PubMed  Google Scholar 

  • Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398

    Article  CAS  PubMed  Google Scholar 

  • Sagar SS, Kumar R, Kaistha SD (2016) Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng 42(1):95–103

    Article  CAS  Google Scholar 

  • Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarachu AN, Alonso JC, Grau O (1980) Novobiocin blocks the shutoff of SPO1 early transcription. Virology 105(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Bischofberger AM, Hall AR (2017) Modification of Escherichia coli–bacteriophage interactions by surfactants and antibiotics in vitro. FEMS Microbiol Ecol 93(1):1–9

    Article  CAS  Google Scholar 

  • Schelz Z, Molnar J, Hohmann J (2006) Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77(4):279–285

    Article  CAS  PubMed  Google Scholar 

  • Schneider CL (2017) Bacteriophage-mediated horizontal gene transfer: transduction. In : Harper DR, Abedon ST, Burrowes BH, McConville ML (eds) Bacteriophages. Springer, Berlin, pp 1–42

    Google Scholar 

  • Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, Rotolo JA et al (2014) Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 209:1469–1478. https://doi.org/10.1093/infdis/jit637

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva S, Rodrigues C, Oliveira H, Azeredo J (2012) Combined antibiotic-phage therapies to control Pseudomonas aeruginosa biofilms. Instit Biotechnol Bioeng 2012:4710

    Google Scholar 

  • Straub ME, Appelbaum M (1932) Studies of commercial bacteriophage products. J Am Med Assoc 100:110–113

    Article  Google Scholar 

  • Straub ME, Rakieten ML (1932) Studies with Staphylococcus bacteriophage I. The preparation of polyvalent Staphylococcus bacteriophage. Yale J Biol Med 4:807–819

    Google Scholar 

  • Suttle CA (2005, Sep 15) Viruses in the sea. Nature 437(7057):356–361

    Article  CAS  PubMed  Google Scholar 

  • Tan SY, Tatsumura Y (2015) Alexander Fleming (1881-1955): discoverer of penicillin. Singap Med J 56(7):366–367

    Article  Google Scholar 

  • Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2(9):575–579

    Article  CAS  PubMed  Google Scholar 

  • Torres-Barcelo C, Arias-Sanchez FI, Vasse M, Ramsayer J, Kaltz O et al (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 9(9):e106628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres-Barcelo C, Franzon B, Vasse M, Hochberg ME (2016) Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 9:583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twort FW (1915) An investigation on the nature of the ultramicroscopic viruses. Lancet 186:1241–1243

    Article  Google Scholar 

  • Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay JP (2007) European regulatory conundrum of phage therapy. Future Microbiol 2(5):485–491

    Article  CAS  PubMed  Google Scholar 

  • Verma P (2007) Methods for determining bactericidal activity and antimicrobial interactions: synergy testing, time-kill curves, and population analysis. In: Schwalbe R, Steele-Moore L, Goodwin AC (eds) Antimicrobial susceptibility testing protocols. CRC, New York, pp 275–299

    Chapter  Google Scholar 

  • Verma V, Harjai K, Chhibber S (2009) Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother 64:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Harjai K, Chhibber S (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling 26:729–737

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16(2–3):97–110

    Article  CAS  PubMed  Google Scholar 

  • Watanakunakorn C (1984) Mode of action and in-vitro activity of vancomycin. J Antimicrob Chemother 14(D):7–18

    Article  CAS  PubMed  Google Scholar 

  • Waxman SA (1947) What is an antibiotic or an antibiotic substance? Mycologia 39:565–569

    Article  Google Scholar 

  • Wehrli W (1983) Rifampin: mechanisms of action and resistance. Rev Infect Dis 5(3):S407–S411

    Article  CAS  PubMed  Google Scholar 

  • Woo J, Ahn J (2014) Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol 196:719–727

    Article  CAS  PubMed  Google Scholar 

  • Yamagami H, Endo H (1969) Loss of lysis inhibition in filamentous Escherichia coli infected with wild-type bacteriophage T4. J Virol 3:343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Mao J, Xie J (2013) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265–274

    Article  CAS  Google Scholar 

  • Yang H, Yu J, Wei H (2014) Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol 16(5):542

    Google Scholar 

  • Yazdi M, Bouzari M, Ghaemi EA (2018) Isolation and characterization of a lytic bacteriophage (vB_PmiS-TH) and its application in combination with ampicillin against planktonic and biofilm forms of Proteus mirabilis isolated from urinary tract infection. J Mol Microbiol Biotechnol 28:37–46

    Article  CAS  PubMed  Google Scholar 

  • Zhang QG, Buckling A (2012) Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol Appl 5:575–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110(1):286–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Knezevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knezevic, P., Aleksic Sabo, V. (2019). Combining Bacteriophages with Other Antibacterial Agents to Combat Bacteria. In: Górski, A., Międzybrodzki, R., Borysowski, J. (eds) Phage Therapy: A Practical Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-26736-0_10

Download citation

Publish with us

Policies and ethics