Skip to main content

Understanding Interactions of Nanomaterials with Soil: Issues and Challenges Ahead

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 27))

Abstract

Nanotechnology is considered as a new generation of technology, which might have a revolutionary impact on economies through new consumer products, manufacturing methods, and material usage. Increasing studies showed the toxicity of different metal-based nanoparticles, which raises concerns over their fate and transport in the environment. The aim of this study was to improve understanding on the long-term interactions of nanomaterial with natural and undisturbed soil during land application of nanomaterial-contaminated sludge, to identify factors which affect their transport and mobility and identify issues and challenges.

Scientific databases were reviewed and different combinations of keywords were used. The major finding of this study included the effects of various properties, like pH, ionic strength, natural organic matter content, surface coating, size and aggregation of nanoparticles, sand/soil characteristics, and column flow characteristics on the fate and transport of nanomaterials. These included variability in particle size and concentration, water chemistry (i.e., electrolyte species, ionic strength, and pH), flow velocity, and choice of collector surface. These findings were expected to improve fundamental understanding on fate and transport of nanomaterials in porous medium. It aimed to provide information on extents of retention of nanomaterials and associated ions in porous medium and the factors that regulate the deposition of these nanoparticles. It also intended to understand the effect of the presence of nanomaterials on the fate of ions associated with other nanomaterials and its implications. All these data were necessary to comprehend the long-term release and interaction dynamics of nanomaterials in the soil along with their chemical modification and transformation predicting their fate and transport in the soil media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APU:

Amphiphilic polyurethane nanoparticles

CuO NPs:

Copper oxide nanoparticles

DLVO:

Derjaguin, Landau, Verwey, and Overbeek

NOM:

Natural organic matter

nZVI:

Nano-zerovalent iron

OECD:

Organisation for Economic Co-operation and Development

TiO2 :

Titanium dioxide nanoparticles

ZnO NPs:

Zinc oxide nanoparticles

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56(5):300–306

    Article  CAS  Google Scholar 

  • Alireza S, Hasan BM, Gelsefidi S, Mohammad MS (2013) Application of nanomaterial to stabilize a weak soil. International conference on case histories in geotechnical engineering, Paper 5

    Google Scholar 

  • Arya A, JainA (2017) A review of geotechnical characteristics of nano additives treated soils. International conference on recent developments in engineering science. Humanities and Management, Chandigarh. ISBN:978-93-86171-25-2

    Google Scholar 

  • Babu S, Joseph S (2015) Effect of nano materials on properties of soft soil. Int J Sci Res (IJSR); ISSN (Online): 2319–7064

    Google Scholar 

  • Bahmani SH, Bujang BK, Asadi H, Farzadnia A, N. (2014) Stabilization of residual soil using SiO2 Nano particles and cement. Constr Build Mater 64:350–359

    Article  Google Scholar 

  • Bailey RE, Nie SM (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125:7100–7106

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 8(13):387–393

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from ecommercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27(10):6059–6068

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Bradford SA, Yates SR, Bettahar M, Simunek J (2002) Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour Res 38(12):63-1–63-12

    Article  Google Scholar 

  • Carstens JF, Bachmann J, Neuweiler I (2017) Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand. Coll Surf A Phys Eng Asp 520:532–543

    Article  CAS  Google Scholar 

  • Chalew ATE, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121(10):1161–1166

    Article  CAS  Google Scholar 

  • Chang S, Zhou M, Grover CP (2004) Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification. Opt Express 12:143–148

    Article  CAS  Google Scholar 

  • Choobbasti AJ, Vafaei A, Kutanaei SS (2015) Mechanical properties of Sandy soil improved with cement and nanosilica. Open Eng J 5(1):111–116

    CAS  Google Scholar 

  • Chowdhury I, Hong Y, Honda RJ, Walker SL (2011) Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J Colloid Interface Sci 360(2):548–555

    Article  CAS  Google Scholar 

  • Consumer Products Inventory (2015) The project on emerging nanotechnologies; Woodrow Wilson International Center for Scholars

    Google Scholar 

  • Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) 704 retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76:891–902

    Article  CAS  Google Scholar 

  • Cornelis G, Rinke-Hind K, Kuhlbusch T, Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44(24):2720–2764

    Article  CAS  Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  Google Scholar 

  • Dimkpa CO, Calder A, McLean JE, Britt DW, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756

    Article  CAS  Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43(5):1282–1286

    Article  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nanoaluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • ENV/JM/MONO/(2012) 40

    Google Scholar 

  • ENV/JM/MONO/(2015)15/Part 3

    Google Scholar 

  • Fang J, Shan X, Wen B, Lin J, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157(4):1101–1109

    Article  CAS  Google Scholar 

  • Fang J, Zhang K, Sun P, Lin D, Shen B, Luo Y (2016) Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: effect of ionic strength and fulvic acid. Sci Total Environ. Elsevier B.V. 571:471–478

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn L, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359

    Article  CAS  Google Scholar 

  • Gabaldón C, Marzal P, Seco A, Gonzalez JA (2000) Cadmium and copper removal by a granular activated carbon in laboratory column systems cadmium and copper removal by a granular activated carbon in laboratory column systems. Sep Sci Technol 37–41:1039–1053

    Article  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. https://doi.org/10.1186/1754-1611-3-9

    Article  CAS  Google Scholar 

  • Ganesh R, Smeraldi J, Hosseini T, Khatib L, Olson BH, Rosso D (2010) Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environ Sci Technol 44:7808–7813

    Article  CAS  Google Scholar 

  • Godinez IG, Darnault CJG (2011) Aggregation and transport of nanoTiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res 45(2):839–851

    Article  CAS  Google Scholar 

  • Godinez IG, Darnault CJG, Khodadoust AP, Bogdan D (2013) Deposition and release kinetics of nanoTiO2 in saturated porous media: effects of solution ionic strength and surfactants. Environ Pollut 174:106–113

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23(29):1–7

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Zhao D (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Environ Sci Technol 48(7):3986–3994

    Article  CAS  Google Scholar 

  • Gottschalk F, Sondere T, Schols R, Nowack B (2009) Modeled environmental concentrations of engineered Nanomaterials for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693

    Article  CAS  Google Scholar 

  • Han P, Wang X, Cai L, Tong M, Kim H (2014) Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: effects of pH, ionic strength, and humic acid. Colloids Surf A Physicochem Eng Asp 454(1):119–127

    Article  CAS  Google Scholar 

  • Han B, Zhang M, Zhao D, Feng Y (2015) Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles. Water Res 70:288–299

    Article  CAS  Google Scholar 

  • He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221

    Article  CAS  Google Scholar 

  • He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34

    Article  CAS  Google Scholar 

  • He F, Zhang M, Qian T, Zhao D (2009) Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J Colloid Interface Sci 334(1):96–102

    Article  CAS  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44(7):2360–2370

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76(4):822–827

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Hou L, Li K, Ding Y, Li Y, Chen J, Wu X, Li X (2012) Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere. Elsevier Ltd 87(3):248–252

    Article  CAS  Google Scholar 

  • Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Wu L, Yao Y, Zhang M, Liu L (2013) Filtration of engineered nanoparticles in carbon-based fixed bed columns. Chem Eng J 220(2013):221–227

    Article  CAS  Google Scholar 

  • Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323

    Article  CAS  Google Scholar 

  • Jeong S-W, Kim SD (2009) Aggregation and transport of copper oxide nanoparticles in porous media. J Environ Monit 11(9):1595

    Article  CAS  Google Scholar 

  • Jiang X, Tong M, Kim H (2012) Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. J Colloid Interface. Sci Elsevier Inc. 386(1):34–43

    Article  CAS  Google Scholar 

  • Johnson RP, Elimelech M (1995) Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11:801–812

    Article  CAS  Google Scholar 

  • Johnson AC, Bowes MJ, Crossley A, Jarvie HP (2011) An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Sci Total Environ 409:2503–2501

    Article  CAS  Google Scholar 

  • Jones EH, Su C (2012) Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Res 46(7):2445–2456

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  Google Scholar 

  • Kasel D, Bradford SA, Simunek J, Outz T, Vereecken H, Klumpp E (2013) Limited transport of functionalized multi-walled carbon nanotubes` in two natural soils. Environ Pollut 180:152–158

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cher G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. https://doi.org/10.1021/es902987d

    Article  CAS  Google Scholar 

  • Khalid N, Mukri M, Mohamad K, Kamarudin F (2015) Influence of nanosoil particles in soft soil stabilization. Electron J Geotech Eng 20(2):731–738

    Google Scholar 

  • Kirkegaard P, Hansen SF, Rygaard M (2015) Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation. Environ Sci Nano 2:191–202

    Article  CAS  Google Scholar 

  • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res. Elsevier Ltd 44(14):4105–4114

    Article  CAS  Google Scholar 

  • Limbach LK, Bereiter R, Muller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42(15):5828–5833

    Article  CAS  Google Scholar 

  • Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41(12):2491–2502

    Article  CAS  Google Scholar 

  • Liu X, O’Carroll DM, Petersen EJ, Qingguo H, Anderson CL (2009) Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol 43(21):8153–8158

    Article  CAS  Google Scholar 

  • Liu HF, Qian TW, Zhao DY (2013) Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles. Chin Sci Bull 58(2):275–281

    Article  CAS  Google Scholar 

  • Louie SM, Spielman-Sun ER, Small MJ, Tilton RD, Lowry GV (2015) Correlation of the physicochemical properties of natural organic matter samples from different sources to their effects on gold nanoparticle aggregation in monovalent electrolyte. Environ Sci Technol 49:2188–2198

    Article  CAS  Google Scholar 

  • Mashayekhi H, Ghosh S, Du P (2012) Effect of natural organic matter on aggregation behavior of C60 fullerene in water. J Colloid Interface Sci 374(1):111–117

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20:9000–9006

    Article  CAS  Google Scholar 

  • Nohani E, Alimakan E (2015) The effect of nanoparticles on geotechnical properties of clay. Int J Life Sci 9(4):25–27

    Article  Google Scholar 

  • OECD Environment, Health and Safety Publications Series on Pollutant Release and Transfer Registers; No. 16 Global Pollutant Release and Transfer Register, Proposal for a Harmonized List of Pollutants. (2014)

    Google Scholar 

  • Pan G, Li L, Zhao D, Chen H (2010) Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils. Environ Pollut 158(1):35–40

    Article  CAS  Google Scholar 

  • Pavlova-Verevkina OB, Ozerina LA, Politova ED, Surin NM, Ozerin AN (2009) Effect of electrolytesonthe slow aggregation of TiO2 nanocrystals. Colloid J 71(4):529–533

    Article  CAS  Google Scholar 

  • Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano and microscale latex particles in saturated porous media. J Colloid Interface Sci 321:74–83

    Article  CAS  Google Scholar 

  • Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Piplai T, Kumar A, Alappat BJ (2017) Removal of mixture of ZnO and CuO nanoparticles (NPs) from water using activated carbon in batch kinetic studies. Water Sci Technol 75(4):928–943

    Article  CAS  Google Scholar 

  • Piplai T, Kumar A, Alappat BJ (2018) Removal of ZnO and CuO nanoparticles (NPs) from water using activated carbon column. J Environ Eng 144(3):1–9

    Article  Google Scholar 

  • Qi Z, Zhang L, Chen W (2014) Transport of graphene oxide nanoparticles in saturated sandy soil. Environ Sci Processes Impacts 16(10):2268–2277

    Article  CAS  Google Scholar 

  • Ryan NJ, Elimelech M (1996) Review: colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107:1–56

    Article  CAS  Google Scholar 

  • Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Seetha N, Mohan Kumar MS, Hassanizadeh SM (2015a) Modeling the co-transport of viruses and colloids in unsaturated porous media. J. Contam Hydrol 181:82–101

    Article  CAS  Google Scholar 

  • Seetha N, Hassanizadeh SM, Mohan Kumar MS, Raoof A (2015b) Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resour Res 51:8034–8059

    Article  Google Scholar 

  • Shani C, Weisbrod N, Yakirevich A (2008) Colloid transport through saturated sand columns: influence of physical and chemical surface properties on deposition. Colloids Surf A Physicochem Eng Asp 316(1–3):142–150

    Article  CAS  Google Scholar 

  • Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY (2010) Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ Sci Technol 44(13):4897–4902

    Article  CAS  Google Scholar 

  • Syngouna VI, Chrysikopoulos CV (2013) Cotransport of clay colloids and viruses in water saturated porous media. Colloids Surf A Physicochem Eng Asp 416(2013):56–65

    Article  CAS  Google Scholar 

  • Syngouna VI, Chrysikopoulos CV (2015) Experimental investigation of virus and clay particles in partially saturated columns packed with glass beads. J Colloid Interface Sci 440:140–150

    Article  CAS  Google Scholar 

  • Taha MR, Taha OM (2012) Influence of Nanomaterial on the expansive and shrinkage soil behavior. J Nanopart Res 14:1–13. https://doi.org/10.1007/s11051-012-1190-0

    Article  CAS  Google Scholar 

  • Tan M, Qiu G, Ting Y (2015) Bioresource technology effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor. Bioresour Technol 185:125–133

    Article  CAS  Google Scholar 

  • Torkzaban S, Bradford SA, van Genuchten MT, Walker SL (2008) Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. J Contam Hydrol 96(1–4):113–127

    Article  CAS  Google Scholar 

  • Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A 355(1–2):186–192

    Article  CAS  Google Scholar 

  • Tumin ND, Chuah AL,Zawani Z, Rashid SA (2008) Adsorption of copper from aqueous solution by elais guineensis kernal activated carbon. J Eng Sci Technol 3(2):180–189, 33(6):587–590

    Google Scholar 

  • Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38(5):1605–1610

    Article  CAS  Google Scholar 

  • Walshe GE, Pang L, Flury M, Close ME, Flintoft M (2010) Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res 44:1255–1269

    Article  CAS  Google Scholar 

  • Wan Yaacob WZ, Kamaruzaman N, Samsudin AR (2012) Development of Nanozero Valent Iron for the remediation of contaminated water. Chem Eng Trans 28:25–30. https://doi.org/10.3303/CET1228005

    Article  Google Scholar 

  • Wang C, Bobba AD, Attinti R, shen c, Lazouskaya V, Wang L-P, Jin Y (2012) Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environ Sci Technol 46(13):7151–7158

    Article  CAS  Google Scholar 

  • Wang Z, Quik JT, Song L, van den Brandhof EJ, Wouterse M, Peijnenburg WJ (2015) Humic substances alleviate the aquatic toxicity of PVP-coated silver nanoparticles to organisms of different trophic levels. Environ Toxicol Chem 34:1239–1245

    Article  CAS  Google Scholar 

  • Waznea M, Liua X, Christodoulatosa C, Jasinkiewiczb KL (2008) Studies on boron nanoparticles aggregation and transport in porous media. J Colloid Interface Sci 330(1):90–96

    Google Scholar 

  • Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13(5):1195–1203

    Article  CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43(20):5171–5179

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41(10):2101–2108

    Article  CAS  Google Scholar 

  • Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Zhang G (2007) Soil nanoparticles and their influence on engineering properties of soils. In: Advances in measurement and modeling of soil behavior. https://doi.org/10.1061/40917(236)37

  • Zhang Y, Mi L, Wang PN, Ma J, Chen JY (2008) pH-dependent aggregation and photoluminescence behavior of thiol-capped CdTe quantum dots in aqueous solutions. J Lumin 128(12):1948–1951

    Article  CAS  Google Scholar 

  • Zhang W, Rattanaudompol US, Li H, Bouchard D (2013) Effects of humic and fulvic acids on aggregation of aqu/nC(60) nanoparticles. Water Res 47:1793–1802

    Article  CAS  Google Scholar 

  • Zhao LJ, Pirelta-Videa J, Hernandez-Viezcas J, Hong J, Gardea-Torresdey J (2012) Transport and retention behavior of ZnO nanoparticles in two natural soils: effect of surface coating and soil composition. J Nano Res 17:229–242

    Article  CAS  Google Scholar 

  • Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956

    Article  CAS  Google Scholar 

  • Zhu M, Wang H, Keller AA, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Indian Institutes of Technology (IIT), Delhi, for providing all facilities and financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piplai, T., Parsai, T., Kumar, A., Alappat, B.J. (2020). Understanding Interactions of Nanomaterials with Soil: Issues and Challenges Ahead. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology Volume 3. Environmental Chemistry for a Sustainable World, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-26672-1_4

Download citation

Publish with us

Policies and ethics