Skip to main content

Constructing a Data Visualization Recommender System

  • Conference paper
  • First Online:
Data Management Technologies and Applications (DATA 2018)


Choosing a suitable visualization for data is a difficult task. Current data visualization recommender systems exist to aid in choosing a visualization, yet suffer from issues such as low accessibility and indecisiveness. In this study, we first define a step-by-step guide on how to build a data visualization recommender system. We then use this guide to create a model for a data visualization recommender system for non-experts that aims to resolve the issues of current solutions. The result is a question-based model that uses a decision tree and a data visualization classification hierarchy in order to recommend a visualization. Furthermore, it incorporates both task-driven and data characteristics-driven perspectives, whereas existing solutions seem to either convolute these or focus on one of the two exclusively. Based on testing against existing solutions, it is shown that the new model reaches similar results while being simpler, clearer, more versatile, extendable and transparent. The presented guide can be used as a manual for anyone building a data visualization recommender system. The resulting model can be applied in the development of new data visualization software or as part of a learning tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

    The whole model can be viewed at a website dedicated to this research project:


  1. Data-Driven Documents (d3.js). Accessed 4 Aug 2017

  2. Kubernátová, P., Friedjungová, M., van Duijn, M.: Knowledge at first glance: a model for a data visualization recommender system suited for non-expert users. In: Proceedings of the 7th International Conference on Data Science, Technology and Applications - Volume 1: DATA, INSTICC, SciTePress, pp. 208–219 (2018)

    Google Scholar 

  3. O’Neil, C., Schutt, R.: Doing Data Science: Straight Talk From The Frontline. O’ Reilly Media, Sebastopol (2014)

    Google Scholar 

  4. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  5. Kirk, A.: Data Visualization: A Handbook for Data Driven Design. SAGE, London (2016)

    Google Scholar 

  6. Illinsky, N., Steele, J.: Designing Data Visualizations: Representing Informational Relationships. O’Reilly Media, Sebastopol (2011)

    Google Scholar 

  7. Munzner, T., Maguire, E.: Visualization Analysis and Design. CRC Press, Boca Raton (2015)

    Google Scholar 

  8. Kaur, P., Owonibi, M.: A review on visualization recommendation strategies. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 266–273 (2017)

    Google Scholar 

  9. Gnanamgari, S.: Information presentation through default displays. Ph.D. Dissertation, Philadelphia (1981)

    Google Scholar 

  10. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. (TOG) 5(2), 110–141 (1986)

    Article  Google Scholar 

  11. Casner, S., Larkin, J.H.: Cognitive efficiency considerations for good graphic design. Carnegie-Mellon University Artificial Intelligence and Psychology Project, Pittsburgh (1989)

    Google Scholar 

  12. Roth, S.F., Mattis, J.: Data characterization for intelligent graphics presentation. In: SIGCHI Conference on Human Factors in Computing Systems (1990)

    Google Scholar 

  13. Hanrahan, P.: VizQL: a language for query, analysis and visualization. In: Proceedings of the 2006 ACM SIGMOD international conference on Management of data. ACM (2006)

    Google Scholar 

  14. Stolte, C.: Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph. 8(1), 52–65 (2002)

    Article  Google Scholar 

  15. Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)

    Article  Google Scholar 

  16. Viegas, F., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: ManyEyes: a site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)

    Article  Google Scholar 

  17. Smart data analysis and visualization. Accessed 4 Aug 2017

  18. Key, A., Perry, D., Howe, B., Aragon, C.: VizDeck: self-organizing dashboards for visual analytics. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (2012)

    Google Scholar 

  19. Available chart types in Office. Accessed 4 Aug 2017

  20. Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: SeeDB: supporting visual analytics with data-driven recommendations. VLDB 8, 2182–2193 (2015)

    Google Scholar 

  21. Wongsuphasawat, K., Moritz, D., Mackinlay, J., Howe, B., Heer, J.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Vis. Comput. Graph. 22(1), 649–658 (2016)

    Article  Google Scholar 

  22. Vega Compass. Accessed 4 Aug 2017

  23. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph. 23(1), 341–350 (2017)

    Article  Google Scholar 

  24. Chart and Graph Types. Accessed 9 Aug 2017

  25. Wehrend, S., Lewis, C.: A problem-oriented classification of visualization techniques. In: Proceedings of the 1st Conference on Visualization 1990. IEEE Computer Society Press (1990)

    Google Scholar 

  26. Zhou, M.X., Feiner, S.K.: Visual task characterization for automated visual discourse synthesis. In: Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co. (1998)

    Google Scholar 

  27. Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings of the 14th International Conference on Intelligent User Interfaces. ACM (2009)

    Google Scholar 

  28. Zhou, M.X., Chen, M., Feng, Y.: Building a visual database for example-based graphics generation. In: INFOVIS 2002 IEEE Symposium (2002)

    Google Scholar 

  29. Alborzi, F., Reutter, J., Chaudhuri, S.: DataSlicer: task-based data selection for visual data exploration. arXiv preprint (2017)

    Google Scholar 

  30. Bbccouk: Accessed 17 Aug 2017

  31. Evergreen, S.D.: Effective Data Visualization: The Right Chart for Your Data. SAGE Publications, Thousand Oaks (2016)

    Google Scholar 

  32. Yau, N.: Visualize This: The FlowingData Guide to Design, Visualization, and Statistics. Wiley, Hoboken (2011)

    Google Scholar 

  33. Yau, N.: Data Points: Visualization That Means Something. Wiley, Hoboken (2013)

    Google Scholar 

  34. Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization ZOO. Queue 8(5) (2010)

    Google Scholar 

  35. Hardin, M., Hom, D., Perez, R., Williams, L.: Which chart or graph is right for you?. Tell Impactful Stories with Data, Tableau Software (2012)

    Google Scholar 

  36. Yuk, M., Diamond, S.: Data Visualization for Dummies. Wiley, Hoboken (2014)

    Google Scholar 

  37. Brath, R., Jonker, D.: Graph Analysis and Visualization: Discovering Business Opportunity in Linked Data. Wiley, Hoboken (2015)

    Book  Google Scholar 

  38. Borner, K., Polley, D.E.: Visual Insights: A Practical Guide to Making Sense of Data. MIT Press, Cambridge (2014)

    Google Scholar 

  39. Telea, A.C.: Data Visualization: Principles and Practice. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  40. Borner, K.: Atlas of Knowledge: Anyone Can Map. MIT Press, Cambridge (2015)

    Google Scholar 

  41. Ware, C.: Visual Thinking: For Design. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  42. Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)

    Google Scholar 

  43. Stacey, M., Salvatore, J., Jorgensen, A.: Visual Intelligence: Microsoft Tools and Techniques for Visualizing Data. Wiley, Hoboken (2015)

    Google Scholar 

  44. Hinderman, B.: Building Responsive Data Visualization for the Web. Wiley, Hoboken (2015)

    Book  Google Scholar 

  45. Gemignani, Z., Gemignani, C., Galentino, R., Schuermann, P.: Data Fluency: Empowering Your Organization with Effective Data Communication. Wiley, Hoboken (2014)

    Google Scholar 

Download references


Research supported by SGS grant No. SGS17/210/OHK3/3T/18 and GACR grant No. GA18-18080S.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Petra Kubernátová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kubernátová, P., Friedjungová, M., van Duijn, M. (2019). Constructing a Data Visualization Recommender System. In: Quix, C., Bernardino, J. (eds) Data Management Technologies and Applications. DATA 2018. Communications in Computer and Information Science, vol 862. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26635-6

  • Online ISBN: 978-3-030-26636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics