Skip to main content

Modern CNNs for IoT Based Farms

  • Conference paper
  • First Online:
Information and Communication Technology for Development for Africa (ICT4DA 2019)

Abstract

Recent introduction of ICT in agriculture has brought a number of changes in the way farming is done. This means use of Internet of Things(IoT), Cloud Computing(CC), Big Data (BD) and automation to gain better control over the process of farming. As the use of these technologies in farms has grown exponentially with massive data production, there is need to develop and use state-of-the-art tools in order to gain more insight from the data within reasonable time. In this paper, we present an initial understanding of Convolutional Neural Network (CNN), the recent architectures of state-of-the-art CNN and their underlying complexities. Then we propose a classification taxonomy tailored for agricultural application of CNN. Finally, we present a comprehensive review of research dedicated to applications of state-of-the-art CNNs in agricultural production systems. Our contribution is in two-fold. First, for end users of agricultural deep learning tools, our benchmarking finding can serve as a guide to selecting appropriate architecture to use. Second, for agricultural software developers of deep learning tools, our in-depth analysis explains the state-of-the-art CNN complexities and points out possible future directions to further optimize the running performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853 (2015)

    Google Scholar 

  2. Luo, P., Li, H.: Research on quantum neural network and its applications based on tanh activation function. Comput. Digit. Eng 16, 33–39 (2016)

    Google Scholar 

  3. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comp. Int. Neurosci. (2016)

    Google Scholar 

  4. Godfray, H.C., et al.: Food security: the challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010)

    Article  Google Scholar 

  5. Lutz, W.L., Sanderson, W.C., Scherbov, S.: The coming acceleration of global population ageing. Nature 451, 716–719 (2008)

    Article  Google Scholar 

  6. Bruinsma, J. (ed.): World Agriculture: Towards 2015/2030. An FAO Perspective. Earthscan, London (2003)

    Google Scholar 

  7. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  8. Gebbers, R., Adamchuk, V.I.: Precision agriculture and food security. Science 327(5967), 828–831 (2010)

    Article  Google Scholar 

  9. Krintz, C., et al.: SmartFarm: improving agriculture sustainability using modern information technology (2016)

    Google Scholar 

  10. Kamilaris, A., Prenafeta Boldú, F.: A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156, 312–322 (2018). https://doi.org/10.1017/S0021859618000436

    Article  Google Scholar 

  11. Weber, R.H., Weber, R.: Internet of Things: Legal Perspectives. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11710-7

    Book  Google Scholar 

  12. Ray, A.S.: Remote sensing in agriculture. Int. J. Environ. Agric. Biotechnol. (IJEAB) 1(3) (2016)

    Article  Google Scholar 

  13. Jinbo, C., Xiangliang, C., Han-Chi, F., et al.: Clust. Comput. https://doi.org/10.1007/s10586-018-2022-5

  14. Chi, M., Plaza, A., Benediktsson, J.A., Sun, Z., Shen, J., Zhu, Y.: Big data for remote sensing: challenges and opportunities. Proc. IEEE 104, 2207–2219 (2016)

    Article  Google Scholar 

  15. Waga, D., Rabah, K.: Environmental conditions’ big data management and cloud computing analytics for sustainable agriculture. World J. Comput. Appl. Technol. 2, 73–81 (2017)

    Google Scholar 

  16. Chen, M., Mao, S., Liu, Y.: Big data: a survey. MONET 19, 171–209 (2014)

    Google Scholar 

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375 (2015)

    Google Scholar 

  19. Poria, S., Cambria, E., Gelbukh, A.F.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

    Article  Google Scholar 

  20. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  21. Bhandare, A., Bhide, M., Gokhale, P., Chandavarkar, R. Applications of convolutional neural networks (2016)

    Google Scholar 

  22. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  23. http://image-net.org/challenges/LSVRC/2017. Accessed 02 Sept 2018

  24. http://image-net.org/challenges/LSVRC/2012/. Accessed 02 Sept 2018

  25. http://image-net.org/challenges/LSVRC/2013/. Accessed 02 Sept 2018

  26. ImageNet. http://image-net.org. Accessed 21 Oct 2018

  27. Zahangir, M.A., et al.: The history began from AlexNet: a comprehensive survey on deep learning approaches. https://arxiv.org/pdf/1803.01164

  28. Kamilaris, A., Prenafeta-Boldu, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  29. Zhang, C., Yue, P., Liping, D., Zhaoyan, W.: Automatic identification of center pivot irrigation systems from landsat images using convolutional neural networks. Agriculture 8, 147 (2018)

    Article  Google Scholar 

  30. Chebet, E., Yujian, L., Njuki, S., Yingchun, L.: A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. https://doi.org/10.1016/j.compag.2018.03.032

    Article  Google Scholar 

  31. Andri, R., Cavigelli, L., Rossi, D., Benini, L.: Hyperdrive: a systolically scalable binary-weight CNN inference engine for mW IoT end-nodes. In: 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 509–515 (2018)

    Google Scholar 

  32. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. CoRR, abs/1605.07678 (2016)

    Google Scholar 

  33. HasanPour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M., Adeli, E.: Towards principled design of deep convolutional networks: introducing SimpNet. CoRR, abs/1802.06205 (2018)

    Google Scholar 

  34. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2012)

    Article  Google Scholar 

  36. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR, abs/1312.4400 (2013)

    Google Scholar 

  37. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. CoRR, abs/1606.02147 (2016)

    Google Scholar 

  38. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  39. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  42. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  43. Huang, G., Liu, Z., Maaten, L.V., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  44. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4. In: Inception-ResNet and the Impact of Residual Connections on Learning. AAAI (2017)

    Google Scholar 

  45. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  46. Bargoti, S., Underwood, J.P.: Deep fruit detection in orchards. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3626–3633 (2017)

    Google Scholar 

  47. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: DeepFruits: a fruit detection system using deep neural networks. Sensors 16, 1222 (2016)

    Article  Google Scholar 

  48. Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 452–456 (2015)

    Google Scholar 

  49. Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional networks for plant recognition. In: CLEF (2015)

    Google Scholar 

  50. Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N.: Using deep learning to challenge safety standard for highly autonomous machines in agriculture. J. Imaging 2, 6 (2016)

    Article  Google Scholar 

  51. Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H.: DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 16, 1904 (2016)

    Article  Google Scholar 

  52. Sørensen, R.A., Rasmussen, J., Nielsen, J., Jørgensen, R.N.: Thistle detection using convolutional neural networks. In: EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France, 2–6 July 2017

    Google Scholar 

  53. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17, 905 (2017)

    Article  Google Scholar 

  54. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana leaf diseases classification. In: BTW (2017)

    Google Scholar 

  55. Hansen, M.F., et al.: Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 98, 145–152 (2018)

    Article  Google Scholar 

  56. Dyrmann, M., Karstoft, H., Midtiby, H.: Plant species classification using deep convolutional neural network. Biosyst. Eng. 151, 72–80 (2016)

    Article  Google Scholar 

  57. Hyun, J., Ibrahim. H., Irfan, M., Minh, L., Suhyeon, I.: UAV based wilt detection system via convolutional neural networks. Sustain. Comput. Inform. Syst. https://doi.org/10.1016/j.suscom.2018.05.010

  58. Picona, A., Alvarez, A., Seitz, M., Ortiz, O., Echazarra, J., Johannes, A.: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. https://doi.org/10.1016/j.compag.2018.04.002

    Article  Google Scholar 

  59. Jia, Y., et al.: Convolutional architecture for fast feature embedding. In: ACM Multimedia (2014)

    Google Scholar 

  60. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  61. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kinyua Gikunda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gikunda, P.K., Jouandeau, N. (2019). Modern CNNs for IoT Based Farms. In: Mekuria, F., Nigussie, E., Tegegne, T. (eds) Information and Communication Technology for Development for Africa. ICT4DA 2019. Communications in Computer and Information Science, vol 1026. Springer, Cham. https://doi.org/10.1007/978-3-030-26630-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26630-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26629-5

  • Online ISBN: 978-3-030-26630-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics