Skip to main content

ProcessExplorer: Intelligent Process Mining Guidance

  • Conference paper
  • First Online:
Business Process Management (BPM 2019)


Large amount of data is collected in event logs from information systems, reflecting the actual execution of business processes. Due to the highly competitive pressure in the market, organizations are particularly interested in optimizing their processes. Process mining enables the extraction of valuable knowledge from event logs, such as deviations, bottlenecks, and anomalies. Due to the increase of process complexity in flexible environments, visual exploration is increasingly becoming more challenging. In this paper, we propose ProcessExplorer, an interactive process mining approach to enable fast data analysis and exploration. ProcessExplorer takes an event log as input to automatically suggest subsets of similar process behavior, evaluate each subset, generate interesting insights, and suggest the subsets with the most interesting characteristics. We implemented our approach into an interactive visual exploration system, which we use as part of a user study conducted to evaluate our approach. Our results show that ProcessExplorer can be successfully applied to analyze and explore real-life data sets efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    van Dongen, B.F., Dataset BPI Challenge 2019. 4TU.Centre for Research Data.


  1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011).

    Book  MATH  Google Scholar 

  2. Ballambettu, N.P., Suresh, M.A., Bose, R.P.J.C.: Analyzing process variants to understand differences in key performance indices. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 298–313. Springer, Cham (2017).

    Chapter  Google Scholar 

  3. Beheshti, S.M.R., Benatallah, B., Motahari-Nezhad, H.R.: Scalable graph-based OLAP analytics over process execution data. Distrib. Parallel Databases 34(3), 379–423 (2015)

    Article  Google Scholar 

  4. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Process variant comparison: using event logs to detect differences in behavior and business rules. Inf. Syst. 74, 53–66 (2018)

    Article  Google Scholar 

  5. Chatain, T., Carmona, J., van Dongen, B.: Alignment-based trace clustering. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 295–308. Springer, Cham (2017).

    Chapter  Google Scholar 

  6. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results. Ph.D. thesis, MIT (1985)

    Google Scholar 

  7. Demiralp, Ç., Haas, P.J., Parthasarathy, S., Pedapati, T.: Foresight: recommending visual insights. Proc. VLDB 10, 1937–1940 (2017)

    Article  Google Scholar 

  8. Dijkman, R., Wilbik, A.: Linguistic summarization of event logs – a practical approach. Inf. Syst. 67, 114–125 (2017)

    Article  Google Scholar 

  9. van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided interaction exploration and performance analysis in artifact-centric process models. Bus. Inf. Syst. Eng. 1–15 (2018)

    Google Scholar 

  10. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees. IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

    Article  Google Scholar 

  11. Joglekar, M., Garcia-Molina, H., Parameswaran, A.: Interactive data exploration with smart drill-down. In: Proceedings of the 32nd ICDE. IEEE (2016)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks. IEEE (1995)

    Google Scholar 

  13. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008).

    Chapter  Google Scholar 

  14. Luo, Y., Qin, X., Tang, N., Li, G.: DeepEye: towards automatic data visualization. In: Proceedings of the 34th ICDE (2018)

    Google Scholar 

  15. Mannhardt, F., De Leoni, M., Reijers, H.A.: Heuristic mining revamped: an interactive, data-aware, and conformance-aware miner. In: BPM Demos, vol. 1920 (2017)

    Google Scholar 

  16. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007).

    Chapter  Google Scholar 

  17. Milo, T., Somech, A.: Next-step suggestions for modern interactive data analysis platforms. In: Proceedings of the 24th SIGKDD. ACM Press (2018)

    Google Scholar 

  18. Mutlu, B., Veas, E., Trattner, C.: VizRec: recommending personalized visualizations. ACM Trans. Interact. Intell. Syst. 6, 1–39 (2016)

    Article  Google Scholar 

  19. Nguyen, T.T., Hui, P.M., Harper, F.M., Terveen, L., Konstan, J.A.: Exploring the filter bubble: the effect of using recommender systems on content diversity. In: Proceedings of the 23rd WWW. ACM Press (2014)

    Google Scholar 

  20. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. Proc. VLDB 5, 1124–1135 (2012)

    Article  Google Scholar 

  21. Seeliger, A., Nolle, T., Mühlhäuser, M.: Finding structure in the unstructured: hybrid feature set clustering for process discovery. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 288–304. Springer, Cham (2018).

    Chapter  MATH  Google Scholar 

  22. Singh, M., Cafarella, M.J., Jagadish, H.V.: DBExplorer: exploratory search in databases. In: EDBT, pp. 89–100 (2016)

    Google Scholar 

  23. Sun, Y., Bauer, B., Weidlich, M.: Compound trace clustering to generate accurate and simple sub-process models. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 175–190. Springer, Cham (2017).

    Chapter  Google Scholar 

  24. Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: SeeDB. Proc. VLDB 7, 1581–1584 (2014)

    Article  Google Scholar 

  25. Wang, P., Tan, W., Tang, A., Hu, K.: A Novel trace clustering technique based on constrained trace alignment. In: Zu, Q., Hu, B. (eds.) HCC 2017. LNCS, vol. 10745, pp. 53–63. Springer, Cham (2018).

    Chapter  Google Scholar 

  26. Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe, B., Heer, J.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Vis. Comput. Graph. 22(1), 649–658 (2016)

    Article  Google Scholar 

  27. Yang, S., et al.: VIT-PLA: visual interactive tool for process log analysis. In: KDD IDEA Workshop, vol. 5, pp. 130–137 (2016)

    Google Scholar 

Download references


This work is funded by the German Federal Ministry of Education and Research (BMBF) Software Campus project “AI-PM” [01IS17050] and the research project “KI.RPA” [01IS18022D].

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander Seeliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seeliger, A., Sánchez Guinea, A., Nolle, T., Mühlhäuser, M. (2019). ProcessExplorer: Intelligent Process Mining Guidance. In: Hildebrandt, T., van Dongen, B., Röglinger, M., Mendling, J. (eds) Business Process Management. BPM 2019. Lecture Notes in Computer Science(), vol 11675. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26618-9

  • Online ISBN: 978-3-030-26619-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics